Dimerization of Ethylene and Propylene Catalyzed by Transition-Metal Complexes[†]

S. MUTHUKUMARU PILLAI, M. RAVINDRANATHAN, and S. SIVARAM*

Research Centre, Indian Petrochemicals Corporation Limited, Baroda-391 346, India

Received November 13, 1984 (Revised Manuscript Received October 2, 1985)

Conte	ents	
I.	Introduction	353
II.	Mechanisms	353
	A. Degenerated Polymerization	353
	B. Concerted Coupling	355
	C. Reductive Dimerization	355
III.	Catalytic Dimerization of Ethylene Using Transition-Metal Complexes	356
	A. Group 11 (IB) Elements	356
	B. Group 12 (IIB) Elements	356
	C. Group 13 (IIIA) Elements	356
	D. Group 14 (IVA) Elements	356
	E. Group 4 (IVB) Elements	356
	1. Titanium	356
	2. Zirconium and Hafnium	359
	F. Group 5 (VB) Elements	359
	1. Vanadium	359
	2. Niobium	359
	3. Tantalum	359
	G. Group 6 (VIB) Elements	360
	1. Chromium and Molybdenum	360
	2. Tungsten	360
	H. Group 7 (VIIB) Elements	360
	I. Group 8-10 (VIII) Elements	360
	1. Iron	360
	2. Cobalt	360
	3. Nickel	360
	4. Ruthenium	362
	5. Rhodium	362
	6. Palladium	363
	7. Iridium and Platinum	364
IV.	Catalytic Dimerization of Propylene Using Transition-Metal Complexes	364
	A. Group 11 (IB) and 12 (IIB) Elements	364
	B. Group 13 (IIIA) Elements	364
	1. Boron	364
	2. Aluminum	364
	C. Group 14 (IVA) Elements	365
	D. Group 4 (IVB) Elements	365
	1. Titanium	365
	2. Zirconium	365

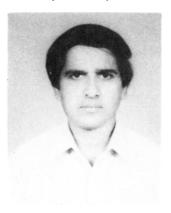
E. Group 5 (VB) Elements 365 365 1. Niobium 365 2. Tantalum F. Group 6 (VIB) Elements 375 375 1. Chromium 375 2. Tungsten 375 G. Group 7 (VIIB) Elements 375 H. Group 8-10 (VIII) Elements 375 1. Iron 375 2. Cobalt 376 3. Nickel 380 4. Rhodium 380 5. Palladium 381 I. Rare-Earth Elements 381 1. Cerium 381 2. Thorium V. Criteria for Catalytic Activity 381 381 VI. Conclusions 392 VII. References

I. Introduction

The dimerization of alkenes is an important method for the production of higher olefins which find extensive application as industrial intermediates. In addition, these reactions serve as good model systems for the study of the reactivity and characterization of metalcarbon bonds. The stimulus in this direction was provided by the pioneering studies of Ziegler in the early 1950s. He explored the use of organoaluminum compounds in the selective dimerization of alkenes. Ever since, workers^{1-10,56} in this area have investigated many novel catalytic systems based on transition-metal complexes. In this present review a comprehensive study of the dimerization of ethylene and propylene by transition-metal complexes has been attempted. The literature up to December 1984 is covered. However, dimerization reactions catalyzed by alkali-metal salts are excluded from the present discussions.

II. Mechanisms

Three types of mechanisms are reported⁶ for the dimerization of olefins.


A. Degenerated Polymerization

The three important steps involved in this mechanism are (1) initiation reaction (formation of an activated complex), (2) insertion of a monomer into the activated complex, and (3) transfer reaction (deactivation of chain).

[†] In this paper the periodic group notation is in accord with recent actions by IUPAC and ACS nomenclature committees. A and B notation is eliminated because of wide confusion. Groups IA and IIA become groups 1 and 2. The d-transition elements comprise groups 3 through 12, and the p-block elements comprise groups 13 through 18. (Note that the former Roman number designation is preserved in the last digit of the new numbering: e.g., III \rightarrow 3 and 13.)

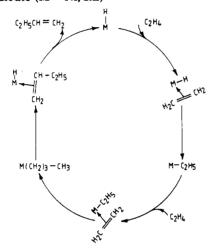
S. Muthukumaru Pillai was born in India and obtained a B.Sc. degree in Chemistry from Madurai University in 1974. After the award of an M.Sc. degree in 1976 from the same university, he went to Indian Institute of Technology, Madras to work for a Ph.D. degree on hydrogen-transfer reactions to ketones from alcohols catalyzed by Ru (II) complexes. After a further year of post doctoral work at the same institute he joined Indian Petrochemicals Corp. Limited as a research officer in 1982. He is at present a senior research officer there. His current interests are in the area of Organometallic Chemistry & Homogeneous Catalysis. He is a life member of the Catalysis Society of India.

Dr. M. Ravindranathan is a Manager in the Research Centre of Indian Petrochemicals Corporation Limited., Vadodara. He obtained his Ph.D. degree from the Indian Institute of Science, Bangalore (1972) and worked as a postdoctoral research associate in Purdue University, West Lafayette, Indiana (1973-1977). Prior to joining Indian Petrochemicals in 1980, he served as a Lecturer in the University of Hyderabad, India. His areas of interest include physical organic chemistry and applications of transition-metal catalysis in organic synthesis.

Coordination of the olefin at the metal hydride center and subsequent insertion of the carbon-carbon double bond of the coordinated olefin into the metal-hydride bond can be related to the initial step of a classical polymerization. The metal-carbon bond, formed in this way, inserts a second monomer molecule previously coordinated into the same metal center (the propagation step). The dimer is formed by a β -hydride abstraction, a common cleavage reaction of transitionmetal-carbon bonds.¹¹ The β-hydrogen of the alkyl group attached to the metal is transferred to the latter with formation of the metal hydride, and the organic residue leaves the metal center as a vinylic olefin. 12 The ease of β -hydrogen abstraction depends on the metal, its valency state, and the ligand environment. The metals on the extreme end of the transition series are prone to β -hydrogen abstraction easily from an attached

Dr. S. Sivaram is a Senior Manager in the Research Centre of Indian Petrochemicals Corp. Limited, located at Baroda, India. He received his M.S. from Indian Institute of Technology, Kanpur, India (1967), and Ph.D. from Purdue University (1971). He did postdoctoral work at the Institute of Polymer Science, The University of Akron (1971-73). His interests lie in the area of transition-metal catalysts for olefin polymerizations and organic chemical conversions, polymer synthesis, and process development. He is a member of the American Chemical Society, Sigma Xi, and Phi Lambda Upsilon.

alkyl group. The complexes based on these metals are good catalysts for the dimerization of olefins.


Selectivity to dimerization is related to the ratio of the rate of β -elimination to the rate of insertion or in other words, to the ratio of the rate of chain transfer to the rate of propagation. The temperature does not seem to influence the ratio. Steric course of insertion is sometimes ambiguous. The factors that are vital in deciding the products are not clearly understood. Metal-hydrogen and metal-carbon bonds react with olefins either like hydride ions and carbanions or like protons and carbonium ions (eq 1). The factors influencing the a/b ratio are yet to be ascertained. It may depend on the nature of olefins, the complex involved, and the temperature.

$$M-R + CH_2 = CH - CH_3$$
 $M - CH_2 - CH - CH_3$
 $M - CH_2 - CH - CH_3$
 $M - CH_2 - CH - CH_2$
 $M - CH_2 - CH_3$
 $M - CH_2 - CH_3$
 $M - CH_2 - CH_3$
 $M - CH_3 - CH_2$
 $M - CH_3 - CH_3$
 $M - CH_3$

The influence of the ligand on the strength of metal-carbon bond and on the course of the reaction is well explained by Olive and Olive.¹³ It is known that the growth step starting from a configuration in which a monomer is coordinated to a transition metal proceeds via a polar, four-center transition state. There is kinetic evidence that both chain growth and β -hydrogen transfer reactions start from the same configuration.¹² A polar, six-centered transition state including a monomer, α -carbon, β -carbon, and one β -H of the growing chain attached to the same metal center leading to β-hydrogen abstraction is suggested. This is supported by ligand effect. Electron-withdrawing ligands withdraw electron density from the metal, thus increasing the positive charge. This polarizes the adjacent bonds including the β -hydrogen, enabling the inclusion of the β -hydrogen into the polar, six-centered transition state (Scheme I). Donor ligands, on the other hand, reduce the positive charge on the metal. Polarization of the adjacent bond is less intensive and hence reaches only

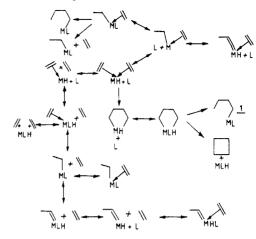
SCHEME I. Chain Growth and β -Hydrogen Transfer from a Metal Alkyl Olefin Complex

SCHEME II. Catalytic Cycle Based on the β -Hydrogen Transfer Route (M = Ni, Rh)

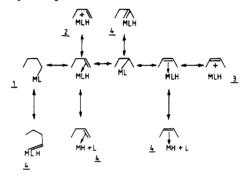
the α -carbon, thus favoring the four-centered transition state. Hence the chain growth is favored. Therefore the ligands can control the nature of reactions.

The catalytic cycle for the dimerization of ethylene based on this mechanism is depicted in Scheme II.¹⁴

B. Concerted Coupling


This proceeds by the stepwise addition of monomers to the metal followed by the formation of carbon-carbon bonds in a multicentered bond process (eq 2). In

$$\begin{array}{c} H_2C \\ H \\ CH_2 \\ CH_2 \\ CH_2 \\ \end{array}$$


the case of monoolefins it has been formally represented as an activation of the hydrogen-carbon bond followed by coupling (eq 3). In a subsequent proposal the hy-

drogen abstraction is represented as an oxidative addition on the metal followed by a reductive elimination and then coupling of the attached elements on a coordinated monomer.¹⁵ The catalysts that follow this route

SCHEME III. Computer-Derived Pathway Starting with MLH and Two Ethylene Molecules

SCHEME IV. Computer-Derived Pathway Starting from Metal Alkyl Complex 1

have generally no isomerizing activity and exhibit high selectivity to the dimer product.

C. Reductive Dimerization

Hydrogen pressure or presence of hydrogen donors or reducing agents can facilitate the dimerization reaction. The products formed are dihydro dimers.

The following hypotheses have been suggested for the mechanisms of these reactions. (1) Hydrogen may act as a chain-transfer agent by hydrogenolysis of the metal-carbon bond when β -elimination is not favored (eq 4). (2) Hydrogen may generate or regenerate a

hydride after coupling of two alkyl groups (eq 5). The insertion steps of olefins into metal-hydrogen or metal-carbon bonds are of the same type as depicted in the preceding mechanisms.

Computer-derived pathways for the formation of butenes from the dimerization of ethylene using various organometallic systems are shown in Schemes III and IV. ¹⁶ 2 and 3 show the formation of free butenes whereas 4 indicates the computer did not find the formation of free olefins.

III. Catalytic Dimerization of Ethylene Using Transition-Metal Complexes

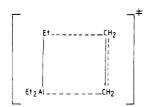
A large number of dimerization catalysts for alkenes, differing in the composition of the products and in the reaction conditions, have been described.³ Many papers¹⁷⁻³¹ on the mechanism of this reaction under the influence of the homogeneous and gel-immobilized catalysts³² have appeared.

Among the group Ia elements the alkali-metal compounds like Na₂O, K₂CO₃, and Na₂CO₃ are very versatile dimerization catalysts. Many industrial processes are available on the basis of these catalysts.

A. Group 11 (IB) Elements

There are two reports^{33,34} on the dimerization (up to 100%) of ethylene in the presence of a catalyst consisting of Et₂AlCl or EtAlCl₂ and CuAlCl₄ or Cu₂Cl₂ or AgAlCl₄. These catalysts have higher activities at moderate temperatures and pressures compared with those of Friedel-Crafts catalysts.

B. Group 12 (IIB) Elements


The only known catalyst for the dimerization of ethylene from this group of elements is ZnAl₂Cl₈.^{33,34} The cocatalysts employed are Et₂AlCl and EtAlCl₂.

C. Group 13 (IIIA) Elements

Aluminum alkyls and related aluminum compounds are well-known catalysts for the dimerization of ethylene. The catalytic potential is a consequence of the readiness with which a trivalent aluminum atom forms electron-deficient or so-called "half" bonds. The kinetics of the homogeneous dimerization of ethylene into 1-butene catalyzed by triethylaluminum in the gas phase has been studied in Teflon-coated reactors at temperatures ranging between 160 and 230 °C.³⁵ The catalyst is recovered quantitatively from the product mixture. The homogeneous reaction mechanism is summarized in eq 6. The rate-controlling step is the

[AlEt₃]₂
$$\Longrightarrow$$
 2AlEt₃
AlEt₃ + C₂H₄ \Longrightarrow Et₂Al(Bu^D)
Et₂AlBu^D \Longrightarrow Et₂AlH + 1-Butene
Et₂AlH + C₂H₄ \Longrightarrow AlEt₃

addition of ethylene to AlEt₃ to form n-butyldiethylaluminum. The detailed mechanism involves the establishment of a preequilibrium between AlEt₃ and ethylene to form a AlEt₃·C₂H₄ complex prior to the formation of the four-center cyclic transition state 5. $^{36-38}$

The observed Arrhenius factor of $\sim 10^{6.2}$ L·mol⁻¹ s⁻¹ is consistent with a molecule-molecule interaction. Moreover, this low value shows that the formation of a loose π -complex cannot be rate determining but the subsequent step leading to formation of a polar, four-centered transition state becomes rate controlling. Formation of the π -complex is substantiated by IR and NMR observations.

It is claimed that very high yields of pure 1-butene are obtained at low conversions of ethylene. $^{39-42}$ Thus it is possible to dimerize ethylene to 1-butene to the extent of 10% and use the resulting mixture for the production of LLDPE copolymer. 41 At higher conversions of ethylene (>20%) appreciable amounts of C_6 and C_8 alkenes are produced along with 1-butene. 43

D. Group 14 (IVA) Elements

PbAl₂Cl₈ with Et₂AlCl or EtAlCl₂ is reported as a catalyst for the dimerization of ethylene.^{33,34}

E. Group 4 (IVB) Elements

1. Titanium

Titanium compounds, especially halides in conjunction with aluminum compounds known to be good catalysts for polymerization of ethylene, give dimers by minor changes in the constituents of the catalytic mixture or experimental conditions. A mixture of titanium esters and trialkylaluminum produces 1-butene from ethylene.⁴⁴

Zhukov and co-workers⁴⁵ have reported optimum conditions for the dimerization of ethylene using titanium alkoxides. Ethylene was dissolved under 2.75 atm pressure in heptane containing 5 g/L of Ti(O-n-Bu)₄ and 20 g/L of AlEt₃ and kept for 6-8 h at 60 °C. The resulting solution yielded 99.5% pure 1-butene. A copolymer of 1-butene with ethylene was also formed during this method. Another report⁴⁶ claims that the dimerization of ethylene is favored with a ratio of $AlR_3/Ti(OR)_4 < 10$. The dimerization selectivity is high (90%); a major part of the dimers formed is 1-butene with a small amount of 2-butenes. This means that the catalyst system is not a very isomerizing one, and it behaves like triethylaluminum alone, except for the fact that the experimental conditions are much less severe. The physicochemical aspects of the catalyst system have been investigated in detail.47-53

Belov and his group⁵⁴ have observed the formation of polymers at high pressures of ethylene with titanium alkoxide-trialkylaluminum systems. Operation at low temperatures (ranging from 10 to 40 °C) increases the activity. However, this involves difficulties regarding the problem of heat removal. Use of low-boiling solvents like ethyl chloride and diethyl ether are preferable because they facilitate heat removal, isolation of 1-butene, and rectification of the solvent. Modifiers like organic esters of orthophosphoric acid, diphenylamine, and phenothiazine have been used. The inclusion of these compounds in amounts of 0.1–1 mol/mol of alkylaluminum leads to certain reduction in polymer formation associated with certain loss of activity of the

SCHEME V. Dimerization of Ethylene on Bimetallic Titanium-Aluminum Complex

SCHEME VI. Generation of Active Catalyst from the Ti(OCH₃)₄-Al(C₂H₅)₃ System

SCHEME VII. Cossee's Mechanism for Dimerization of Ethylene by Ti(OCH₃)₄-Al(C₂H₅)₃

SCHEME VIII. Generation of Bititanium Centers from the Ti(OR)₄-Al(C₂H₅)₃ System

catalyst. Modification of the catalyst Ti(OR)₄-AlR₃ by additions of oxygen allows a 10–20% increase in the yield of 1-butene with simultaneous enhancement of the process selectivity. The quantity of oxygen in the reaction vessel is varied within 0.2:1 to 2:1 with regard to the quantity of alkylaluminum present therein.

The dimerization carried out with a mixture of ethylene-hydrogen with a hydrogen concentration of 5-95% by volume results in enhanced 1-butene formation.⁵⁵

It has been reported that with use of AlEt₃-Ti(O-n-Bu)₄ the conversion to the dimer is maximum for a Al/Ti ratio of 4:1. The activity can be increased by the addition of triphenylphosphine or phenylacetylene.^{56,57}

Angelescu and co-workers⁵⁶ propose the following mechanism for the dimerization of ethylene on the bimetallic titanium-aluminum complex (Scheme V). Typical reaction conditions for the dimerization of ethylene using titanium aryl oxide-Et₃Al systems⁵⁸ are summarized in Table I.

Cossee⁵⁹ has proposed originally a mechanism for the dimerization of ethylene by the $Ti(OMe)_4$ -AlEt₃ system. The generation of an active catalyst is given in Scheme VI. Even though the original catalyst 6 is depicted as an octahedral complex, the self-consistent all-valence electron molecular orbital calculation shows that the most stable complex is a trigonal-bipyramidal one (Scheme VII) with titanium ethyl at an intermediate position between two octahedral sites. 10,60,61 The same theoretical study shows both chain propagation and β -hydrogen transfer responsible for the alkene liberation are favored decisively by the titanium d orbitals. Belov and his group 62,63 have proposed formation of

Belov and his group^{62,63} have proposed formation of intermediate complexes containing >Ti-CH₂-CH₂-Ti< groups for the dimerization of ethylene by Ti(O-n-Bu)₄-AlEt₃ system (Scheme VIII). These behave as binuclear active centers (Scheme IX).⁶⁴ The same authors have reported that the formation of bittanium ethylene-bridged complexes in the presence of AlMe₃ are produced as a result of the recombination of carbeniod intermediates (eq 7). Conversion of carbeniod

$$Ti \stackrel{\text{Me}}{\longrightarrow} Ti = CH_2 + CH_4$$

$$2 \nearrow Ti = CH_2 \longrightarrow Ti - CH_2 - CH_2 - Ti$$

$$(7)$$

TABLE I. Typical Reaction Conditions for the Dimerization of Ethylene Using Titanium Aryl Oxide and Triethylaluminum

Et ₃ Al- Ti(OPh) ₄	Et ₃ Al- Ti(OPhMe) ₄	Et ₃ Al- Ti(OPhAm) ₄
3.0	3.0	5.0
n-heptane	<i>n</i> -heptane	<i>n</i> -heptane
0.2280	0.2770	0.429
15	15	10
40	40	75
40	40	60
21.2	22.6	35.7
91.5	91.3	80.2
5.6	5.7	17.1
2.9	3.0	2.7
85.1	74.4	67.1
	Ti(OPh) ₄ 3.0 n-heptane 0.2280 15 40 40 21.2 91.5 5.6 2.9	Ti(OPh) ₄ Ti(OPhMe) ₄ 3.0 3.0 n-heptane 0.2770 15 15 40 40 21.2 22.6 91.5 91.3 5.6 5.7 2.9 3.0

^a Selectivity to 1-butene is approximately 99%.

SCHEME IX. Dimerization of Ethylene on Bititanium Centers

$$\begin{array}{c} \text{CH}_2 = \text{CH}_2 & \text{CH}_2 = \text{CH}_2 \\ \text{Ti} - \text{CH}_2 - \text{CH}_2 - \text{Ti} \end{array} \qquad \begin{array}{c} \text{CH}_2 - \text{CH}_3 \\ \text{Ti} - \text{CH}_2 - \text{CH}_2 - \text{Ti} \end{array} \qquad \begin{array}{c} \text{CH}_2 - \text{CH}_3 \\ \text{Ti} - \text{CH}_2 - \text{CH}_2 - \text{Ti} \end{array} \qquad \begin{array}{c} \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \\ \text{Ti} - \text{CH}_2 - \text{CH}_2 - \text{Ti} \end{array} \qquad \begin{array}{c} \text{CH}_2 - \text{CH}_2 \\ \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{Ti} \end{array} \qquad \begin{array}{c} \text{CH}_2 - \text{CH}_2 \\ \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \end{array} \qquad \begin{array}{c} \text{CH}_2 - \text{CH}_2 \\ \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \end{array} \qquad \begin{array}{c} \text{CH}_2 - \text{CH}_2 \\ \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \end{array} \qquad \begin{array}{c} \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \\ \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \end{array} \qquad \begin{array}{c} \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \\ \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \end{array} \qquad \begin{array}{c} \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \\ \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \end{array} \qquad \begin{array}{c} \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \\ \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \end{array} \qquad \begin{array}{c} \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \\ \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \end{array} \qquad \begin{array}{c} \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \\ \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \end{array} \qquad \begin{array}{c} \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \\ \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \end{array} \qquad \begin{array}{c} \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \\ \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \end{array} \qquad \begin{array}{c} \text{CH}_2 - \text{CH}$$

species into metallacyclobutane and similar compounds (7) are more facile^{65,66} (eq 8) than the recombination of

carbene species as shown in eq 7 by Belov and coworkers. Thus the proposal is an unusual one and requires further investigation.

Detailed reports⁶⁷⁻⁷⁷ on the kinetics and mechanism of ethylene dimerization by the Ti(OR)₄-AlR₃ system in various solvents are available. Different values of the activation energy are reported.^{69,71,75}

The two-component organometallic catalyst MeTiCl₃-MeAlCl₂,⁷⁸ which is distinct from other Ti-Al systems, shows the following order of activity for the dimerization of ethylene in organic solvents: chlorinated hydrocarbons > aromatic hydrocarbons > aliphatic hydrocarbons. It exists as 8 or 9. The selectivity

SCHEME X. Dimerization of Ethylene on the Cationic Part of Complex 9

$$\begin{array}{c} \text{CH}_{3} \xrightarrow{\text{Ti}} \text{-CI} & \longrightarrow \text{C2HS} \xrightarrow{\text{Ti}} \text{-CI} \\ & \text{C2H4} & \downarrow \\ & \text{CI} \xrightarrow{\text{Ti}} \text{-H2} & \bigoplus_{\text{C2HS}} \text{-Ti} \text{-CI} \\ & \text{C2H4} & \downarrow \\ & \text{C1} \xrightarrow{\text{Ti}} \text{-H2} & \bigoplus_{\text{C2HS}} \text{-Ti} \text{-CH2} \\ & \text{C2H5} & \bigoplus_{\text{C2HS}} \text{-CH2} \\ & \text{C2$$

SCHEME XI. Dimerization of Ethylene via a Titanacyclopentane Complex

of the catalyst is poor in these solvents. The cationic part of the complex coordinates with the olefin, and the mechanism of the reaction is given in Scheme X.

Apart from the alkylaluminum compound employed in previous investigations N,N-dialkylaminoalanes can also be used as a cocatalyst. With N,N-dimethylaminoalanes 95% selectivity to 1-butene is achieved.

Cyclopentadienyltitanium trichloride associated with amalgams of alkali metals⁸⁰ dimerizes ethylene to 1-butene.

Wreford and his co-workers⁸¹ have reported that $(\eta - C_4H_6)_2\text{Ti}(\text{dmpe})$ [dmpe = 1,2-bis(dimethylphosphino)ethane] catalyzes the dimerization of ethylene. A mechanism involving formation of a metallacyclopentane complex is proposed (Scheme XI). This metallacyclopentane complex decomposes to give 1-butene. This is not necessarily by the β -elimination sequence. Intermolecular hydrogen transfer and α -elimination have been suggested as alternative decomposition paths leading to 1-butene. The kinetics of the reaction shows first-order dependence on the catalyst and the olefin. Formation of a monoolefin complex is the probable rate-determining step.

In Cossee's mechanism, the stabilization of a titanium d orbital by interaction with an empty antibonding orbital of the alkene was suggested to be important for catalytic activity. There is no theoretical evidence for the $d \to \pi^*$ back-donation.⁸² Belov's binuclear active centers are ambiguous in the light of the formation of metallacyclobutane and similar compounds. The oxidation number of titanium is important in these reactions. Ti(III) is known to be involved in polymerization. It has been pointed out^{82–84} that the coordination of olefin is favored when the metal is in a higher oxidation state. Wreford and his co-worker's proposal of a concerted coupling of two molecules of ethylene to a tita-

nium atom affording a titanium(IV)-cyclopentane species which then decomposes to 1-butene by β -hydrogen transfer explains the high selectivity to the formation of dimers. The presence of free H⁺ or H⁻ species in the catalyst system is responsible for the isomerization of dimers. The absence of any such species ensures high selectivity to 1-butene and the absence of isomerization to 2-butene.

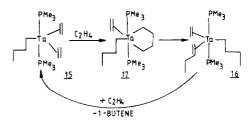
2. Zirconium and Hafnium

A catalyst system consisting of $Zr(benzyl)_4-Et_3Al_2Cl_3$ at 40–80 °C shows high activity toward dimerization and oligomerization of ethylene. ²⁰ $(\eta-C_4H_6)_2Zr(dmpe)$ through the zirconacyclopentane intermediate convers ethylene into 1-butene. ⁸¹ There are patent reports ^{86–88} on the use of $Zr(OR)_4-R_xAlX_{3-x}$ (R = Et, Bu; X = halide) systems as catalysts between 0 and 100 °C for the dimerization reaction. Zirconium alkyls are the intermediates. They are more stable than the titanium analogues, and hence they serve as suitable catalysts for high-temperature investigations.

Du Pont⁸⁹ has patented the preparation of (dmpe)- MH_3 (M = Zr, Hf) and their uses as catalysts for the dimerization of ethylene.

The dimerization of ethylene induced by metallacyclopentane (M = Zr, Hf) can be explained in terms of β -hydride elimination and reductive elimination (Scheme XII). ⁹⁰ n-Alkanes are formed by a competing sequence starting with a further β -hydride elimination from 10, affording butadiene and the hydride complex 11. After hydrogenation of alkene present in the solution by the hydride complex 11, 13 is generated via 12. The (olefin)metallocene complex 13 is trapped by the butadiene formed in the reaction cycle with formation of the catalytically inactive 14.

The complexes of IVB elements under optimum conditions can serve as catalysts for the dimerization and oligomerization of ethylene. It must be noted that Ti(IV), Zr(IV), and Hf(IV) do not have any 3d, 4d, and 5d electrons, respectively, to coordinate strongly with the olefin. One possibility is that the olefin behaves simply as a weak base with a lone pair of electrons. Consequently the alkene is only weakly bonded probably by overlap of s orbitals of the metal with the π orbitals of the alkene. This may be an important requirement for catalysis as distinct from compound formation. The weak coordination allows the olefins to rotate to form a nonplanar transition state which is conducive to catalytic reactions.


F. Group 5 (VB) Elements

1. Vanadium

The use of vanadium trichloride for the dimerization of ethylene is patented.⁹² VCl₃ and isobutylaluminum sequichloride at 60 °C and 3-atm pressure gives 1-butene (7%), trans-2-butene, (47%), and cis-2-butene (41%) along with hexenes (3%), octene (0.6%), and higher boiling distillates (1.4%).

SCHEME XII. Dimerization of Ethylene by a Bis(cyclopentadienyl) Metallacyclopentane Complex (M = Zr, Hf; $Cp = \eta^5 \cdot C_5H_5$)

SCHEME XIII. Proposed Mechanism for Ethylene Dimerization by the Ta(CH₂C[CH₃]₃)₃(CHC[CH₃]₃)-2P(CH₃)₃ System

2. Niobium

The preparation of PhNb(COD)₂⁹³ and (dmpe)₂ NbH₅⁸⁹ and their uses as catalysts for conversion of ethylene to 1-butene have been reported in patents.

3. Tantalum

Schrock and co-workers have investigated the dimerization of ethylene catalyzed by tantalacyclopentane complexes. 9,94,95 The advantage of these complexes is that the isomerization of primary product is negligible. CpTaCl₂(C₄H₈) at 40 psi of ethylene pressure gives 1-butene selectively (~3% 2-butenes).96 On prolonged reaction ethylene/1-butene codimers are formed by the decomposition of mixed metallacycle. The authors have observed⁹⁷ that Ta(CH₂CMe₃)₃(CHCMe₃) and 2 mol of trimethylphosphine produce a homogeneous catalyst which "rapidly" dimerizes ethylene selectively to 1butene. The rate constant of this reaction is reported as approximately $k \approx 10^{-4} \text{ s}^{-1}$ at 36 °C. The active component is $(C_4H_9)Ta(C_2H_4)_2$ (PMe₃)₂ (15) which is trigonal bipyramidal in geometry. The trimethylphosphine ligands are axial, and ethylene ligands are equatorial and perpendicular to the trigonal plane. The mechanism for the dimerization reaction is shown in Scheme XIII. A metallacyclopentane complex forms when ethylene attacks 15 and one of the metallacycle Ta- $C(\alpha)$ bonds is cleaved by a β -hydrogen atom from the butyl ligand to give 16. The alternative possibility, viz., transfer from the metallacycle to the butyl and the ethylene ligand should be slow. The rate-determining step in this mechanism is $15 \rightarrow 17$. This kind of metallacyclopentane mechanism is a plausible alternative to insertion of ethylene into a metal-ethyl bond

whenever such insertion is not expected to be fast and/or when the metals in lower oxidation states are formally oxidized by forming a metallacyclopentane complex. The insertion mechanism can be viewed as proceeding through two steps which include the formation of a metallacyclopentane complex as shown in eq 9.98 It is interesting to note that the analogous

niobium system fails to dimerize ethylene to 1-butene because of its inability to form a metallacyclopentane complex.

G. Group 6 (VIB) Elements

1. Chromium and Molybdenum

The chromium complexes ${\rm CrCl_3L_3}$ and ${\rm CrCl_2L_2(NO)_2}$ wherein the ligands L are pyridine and tri-n-butylphosphine in conjunction with ethylaluminum dichloride effect simple dimerization of ethylene at 50 °C. 99,100,101 A conversion of 4700 g of butenes per gram of chromium complex is achieved with the catalyst ${\rm CrCl_3(4-Etpy)_3}$. Butene fraction consists of 1-butene (50%), trans-2-butene (32%), cis-2-butene (18%), and isobutylene (0.1%). ${\rm Cr^+}$ or ${\rm Cr^{2^+}}$ species may be involved in the reaction. Here chromium atoms are probably associated with the organoaluminum halides to form bridged chromium–halogen–aluminum species.

A chloro-bridged molybdenum complex, $[(\pi - C_6H_6)-Mo(\pi-\text{allyl})Cl]_2$, ¹⁰² with ethylaluminum dichloride catalyzes the dimerization of ethylene in benzene medium at 20 °C.

2. Tungsten

Wideman¹⁰³ has reported a catalyst based on tungsten. The active catalyst is prepared by heating tungsten hexachloride and 2,6-dimethylaniline in a minimum amount of chlorobenzene and subsequently treating with diethylaluminum chloride. A conversion of 176 000 mol of ethylene/mol of tungsten is achieved in 1 h at 40 °C and 27 atm of ethylene pressure. The yield of 1-butene is 92% in the process. An increase in pressure from 27 to 34 atm resulted in the conversion of 184 000 mol of ethylene/mol of tungsten, thereby achieving a better yield of 1-butene (98%) at a faster rate.

H. Group 7 (VIIB) Elements

Manganese chloride, manganese malonate, and manganese acetylacetonate¹⁰⁴ with organoaluminum halides are reported to dimerize ethylene in chlorobenzene solvent. The optimum aluminum to manganese ratio is 3:1. At 45 atm of ethylene pressure and 80-85 °C, butenes consisting of 36.6% 1-butene, 42.2% trans-2-butene, and 21.2% cis-2-butene are formed.

I. Group 8-10 (VIII) Elements

1. Iron

Ferrocene and ferrous chloride along with organoaluminum halides are known to convert ethylene to a mixture of butenes at 1-20 atm and -10 to +50 °C. 105,106

2. Cobalt

In the case of cobalt and modified Ziegler systems have limited activity toward ethylene dimerization. ^{30,107} Cobalt(II) or Cobalt(III) and a reducing organometallic compound system have been specially proposed for this reaction. Tris(acetylacetonato)cobalt(III) and triethylaluminum convert ethylene at 30 °C into *n*-butenes with a selectivity of 99.5%. ¹⁰⁸ The products consist of a mixture of 95% 2-butenes and 5% 1-butene. The molar ratio of AlR₃/Co must be between 2 and 5 as beyond that the activity decreases. On the other hand, the addition of triphenylphosphine decreases the rate of reaction.

(Dinitrogen)hydridotris(triphenylphosphine)cobalt(I) has also been used to dimerize ethylene. 109 Here, the dimerization of ethylene takes place at room temperature without the use of a Lewis acid. Ethylene conversion decreases with time, presumably due to partial decomposition of the catalyst. However, this decomposition is slow at 0 °C. A mechanism is proposed in which the olefin is first inserted between the cobalthydride bond and then a second molecule of the olefin is inserted between the cobalthydride bond. Displacement of the dimer by the olefin regenerates the cyclic process.

The dimerization of ethylene is selectively catalyzed by halotris(triphenylphosphine)cobalt(I) in halobenzene containing boron trifluoride etherate. The catalytic activity is significantly affected by the solvent, bromobenzene being the most effective. The rate of ethylene absorption decreases in the order bromobenzene > iodobenzene > o-dichlorobenzene > chlorobenzene > o-chlorotoluene. The optimum ratio of boron to cobalt for the boron trifluoride etherate-bromotris(triphenylphosphine)cobalt(I) system is 1. This suggests a strong 1:1 interaction between the two components (eq 10). Lewis acids other than aluminum

chloride and boron trifluoride etherate show no dimerization activity with cobalt complexes. Addition of triphenylphosphine and water stops the dimerization almost completely.

Speier has reported the kinetics and mechanism of the dimerization of ethylene using bis[(ethylene)tris-(triphenylphosphine)cobalt] as a catalyst. 112,113 The predominant product is *trans*-2-butene (63%). The mechanism is given in Scheme XIV. Converion of 18 to 19 is the rate-determining step in this mechanism.

3. Nickel

Nickel-based catalyst systems constitute one of the important catalysts for olefin dimerization because it is the only metal which can control the mode of linking of olefins. Its specific activity is high, and it is one of

SCHEME XIV. Dimerization of Ethylene by $[Co(C_2H_4)(PPh_3)_3]_2$

the less expensive of the transition elements. Because of these advantages much research has gone into the study of nickel-catalyzed dimerization.¹¹⁴⁻¹⁴⁰

The discovery of the "nickel effect" represents the starting point for the development of the Ziegler catalysts. A basis for the elucidation of the effect was provided by studies on the reduction of nickel compounds by organoaluminum compounds, the existence of nickel hydrides, and the interactions between nickel (0) and Lewis acids as well as organic compounds of main-group metals. Formation of multicenter bonding systems like 17a involving trialkylaluminum compounds

and nickel atoms has been demonstrated from these studies. These systems further react with coordinated ethylene molecules in a concerted manner to give butenes.

The first reports of the dimerization of alkenes by nickel complexes have been published almost simultaneously in West Germany, 142,143 France, 144 and USSR. 145,146 Ewers has used a highly active homogeneous catalyst prepared by treating Ni(acac)₂, Ni(π -allyl)₂, or Ni(π -allyl)Cl with dialyklaluminum chloride in a toluene medium. A paper by Wilke and co-workers 147 describes the dimerization of ethylene under the influence of (π -allyl)nickel chloride in conjunction with Lewis acids and tertiary phosphines. The allyl group does not participate in the reactions. 148 It is neither displaced as in cyclooligomerization nor inserted as in polymerization but found on the nickel at the end of the reaction. Its role is probably that of a stabilizer of certain electronic states. Chauvin and co-workers 140 have used the Ni(acac)₂-EtAlCl₂ system effectively for the dimerization of ethylene.

An important feature of nickel-catalyzed dimerization is that the Lewis acid is not necessarily a reducing agent when the nickel is bonded to less than two "hard" anions ("bare" nickel, $(\pi$ -allyl)nickel halide, etc.) and is a reducer when the bivalent nickel is bonded to two "hard" anions (NiCl₂, Ni(acac)₂, etc.). It may be pointed out that $\text{Et}_2\text{Al}(\text{OEt})$ is a weak Lewis acid, and hence the

SCHEME XV. Nickelocene-Catalyzed Dimerization of Ethylene

SCHEME XVI. $(\eta^3$ -Cyclopentenyl) $(\eta^5$ -cyclopentadienyl)nickel-catalyzed Dimerization of Ethylene

system Ni(acac)₂-Et₂Al(OEt) is less active. But in the system NiCl₂-PR₃-AlCl₃ the phosphine can play the role of a reducing agent.

The catalytic species formed "in situ" by the reaction of Ni(II) with $R_{6-x}Al_2X_x$ are generally more active. Many attempts have been made to isolate intermediates. Experimental observations are in agreement with the following ionic structure (Ln-Ni-H)+A-, where A- is a noncomplexing anion derived from a Lewis acid. The L may be one of the following: (a) the monomer or the dimer product, (b) a solvent molecule, (c) a component added to the catalyst system like a phosphine, or (d) any compound having a heteroatom which is capable of coordinating with the nickel.

It has been possible to dimerize ethylene by nickel in the absence of a Lewis acid. Butenes are formed by heating nickelocene to 200 °C in the presence of ethylene. ¹⁵² In this process homolytic decomposition of nickelocene produces excited nickel atoms which catalyze dimerization. This is similar to heterogeneous catalysis. In order to explain the nickelocene-catalyzed dimerization of ethylene, Tsutsui¹⁵³ has proposed a three-step mechanism (Scheme XV).

 $(\eta^5\text{-}\mathrm{C}_5\dot{\mathrm{H}}_5)\mathrm{Ni}(\eta^3\text{-}\mathrm{C}_5\mathrm{H}_7)^{126}$ is a highly active unicomponent catalyst for the conversion of ethylene to *n*-butenes and *n*-hexenes at 145–150 °C. At high conversions of ethylene (70–90%) the dimeric product (80–86% yield) contains a high percentage (82–90%) of 1-butene. The cyclopentadienyl group remains bonded to the nickel during catalysis while cyclopentenyl group is labile. A possible mode of activation is the reversible elimination of cyclopentadiene from $(\eta^5\text{-}\mathrm{C}_5\mathrm{H}_5)\mathrm{Ni}(\eta^3\text{-}\mathrm{C}_5\mathrm{H}_7)$ to generate $(\pi\text{-}\mathrm{cyclopentadienyl})$ nickel hydride (Scheme XVI) as a catalytically active intermediate.

SCHEME XVII. Dimerization of Ethylene Catalyzed by Nickelacyclopentane Phosphine Complexes

Ozaki and co-workers¹⁵² have reported dimerization of ethylene catalyzed by bis(triphenylphosphine)(pentachlorophenyl)chloronickel(II) activated with silver salts like $AgClO_4$ or $AgBF_4$. The activity is enhanced by adding a catalytic amount of PPh_3 ($PPh_3/AgClO_4 \le 1$). An excess of PPh_3 ($PPh_3/AgClO_4 \le 2$) stops ethylene dimerization. Separate runs show that $AgNO_3$, $NaClO_4$, and $NaBF_4$ do not activate the catalyst. Enhancement of the activity of the complex by a catalytic amount of PPh_3 may be attributable to an increase in the solubility of $AgClO_4$. Contrary to the PPh_3 complex, the phenyldimethylphosphine complex is much less active for ethylene dimerization.

 $(C_6H_5)Ni(PPh_3)_2Br$ gives a maximum activity for ethylene dimerization when the molar ratio of added AgClO₄ to the complex reaches $2.^{154}$ ³¹P NMR study of the reaction between AgClO₄ and the complex reveals that the variation in dimerization activity becomes parallel with the concentration of $(C_6H_5)Ni(PPh_3)ClO_4$ formed in the reaction. The coordinatively unsaturated state of the complex will be one of the reasons for its catalytic activity. The role of AgClO₄ is to remove of halogen and PPh₃ from the original complex although excessive removal of ligands results in the formation of an inactive complex.

Nickel phosphine metallacyclopentanes especially tris(triphenylphosphine)tetramethylenenickel(II) catalyze the production of cyclobutene and 1-butene from ethylene. The course of the reaction is depicted in Scheme XVII.

The oligomerization of ethylene with a heterogeneous catalyst of a polystyrylnickel phosphorous ligand complex is carried out, and the result is compared with that of the oligomerization of ethylene with a homogeneous catalyst of Ni(acac)₂–Et₃Al₂Cl₃–phosphorous ligand. ¹⁵⁶ When PPh₃ is used as a phosphorous ligand, the homogeneous catalyst gives a considerable amount of trimer together with the dimer but the heterogeneous polystyrylnickel catalyst yields only butenes with mainly 1-butene. The results are discussed in terms of the steric and electronic effect of a phosphorous ligand and the steric effect of the catalyst support (i.e., polystyryl chain).

Ni(PPh₃)₄ anchored on brominated polystyrene on activation by BF₃·OEt₂ exhibits high dimerization catalytic activity for ethylene.¹⁵⁷ The catalyst is reused without loss of activity.

Despite the instability of the catalytic system at low temperature a kinetic study has been carried out in the case of NiCl₂(tetramethylcyclobutadiene)–EtAlCl₂-P- SCHEME XVIII. Dimerization of Ethylene under the Influence of Rhodium Chloride in Alcoholic Hydrogen Chloride Solutions ($S = Cl^-$, H_2O , or Solvent)

Rh
$$Cl_{3}3H_{2}O$$
 $C_{2}H_{4} + \left[c_{2}H_{5}Rh Cl_{3}S\right]^{2}$
 $C_{2}H_{4}$
 $C_{2}H_{4} + \left[c_{2}H_{5}Rh Cl_{3}S\right]^{2}$
 $C_{2}H_{4}$
 $C_{2}H_{5}Rh Cl_{3}(c_{2}H_{4})S$
 $C_{2}H_{5}Rh Cl_{3}(c_{2}H_{4})S$
 $C_{2}H_{4} - C_{4}H_{8}$
 $C_{2}H_{5}Rh Cl_{3}(c_{2}H_{4})S$
 $C_{2}H_{5}Rh Cl_{3}(c_{2}H_{4})S$

 $(n\text{-Bu})_3$ for the dimerization of ethylene. The reaction is second order with respect to monomer and first order with respect to nickel but is of a complex order with respect to aluminum compounds. The overall activation energy lies between 7 and 9 kcal/mol. Kinetics of ethylene dimerization in the presence of heterogenized $(\pi\text{-allyl})$ nickel complexes is also investigated. The reaction is second order with respect to monomer and first order with respect to aluminum compounds.

4. Ruthenium

RuCl₃ in methanol medium is reported to be a dimerization catalyst for ethylene but with poor selectivity and activity. When RuCl₃ is heated with 500–800 atm of ethylene at 130 °C for 10 h, 2-butenes are formed along with hexenes, octenes, and higher olefins. ¹⁶¹

5. Rhodium

Rhodium chloride is active in the dimerization of ethylene at 30–50 $^{\circ}C.^{155}$

Cramer¹⁶² has made a detailed study of the dimerization of ethylene under the influence of rhodium chloride in alcoholic hydrochloric acid solutions and proposed the mechanism as shown in Scheme XVIII. Activation of catalyst occurs by the reaction between RhCl₃ and ethylene with formation of a complex anion (20) of univalent rhodium with two ethylene ligands. A fast protonation of 20 gives the ethyl complex 21, and the insertion of a coordinated ethylene at the rhodium-carbon σ -bond (the rate-determining step) gives the butyl complex 22. This is rapidly converted into a complex, 23, from which a molecule of butene is replaced by ethylene regenerating the starting complex 20. The solvent molecules are introduced into the reaction pathway in order to satisfy the coordination numbers of Rh(I) and Rh(III).

However, Schrock and co-workers⁹⁷ have proposed that the crucial intermediate in Cramer's ethylene dimerization system could be a metallacyclopentane complex and the butyl complex is formed as a result of its protonation (eq 11). The rate of dimerization of

$$\frac{\text{Cl}_{3}(C_{2}H_{4}) \text{ Rh CH}_{2} \text{ CH}_{2} \text{ CH}_{2} \text{ CH}_{2}}{\text{Solvent}} = \frac{\text{H}^{*}}{\text{Solvent}} = \frac{\text{Cl}_{3}(c_{2}H_{4})\text{Rh}(C_{4}H_{9}) \text{ S}}{\text{L}_{111}}$$

$$\frac{\text{d}[C_{4}H_{8}]}{\text{d}t} = k[C_{2}H_{4}](H^{\frac{1}{2}}[Cl^{-}])[Rh]$$

$$(12)$$

ethylene is described by Cramer¹⁶² by eq 12. It is also possible to dimerize ethylene by a nonionic reaction using $(\pi - C_2H_4)Rh(C_2H_4)_2$ as a catalyst, but the reaction is not fast.

Keii and Okura have studied the kinetics of ethylene dimerization with rhodium catalysts such as RhCl₃ and $\text{Cl}_2\text{Rh}_2(\text{C}_2\text{H}_4)_2$. The rate of butene formation in the presence of RhCl₃ is represented by eq 13.

EHMO calculations for the dimerization of ethylene on Rh⁺ and Rh³⁺ ions have been carried out. ¹⁶⁴ In all stages of reaction Rh3+ exhibits greater catalytic activity than Rh⁺.

Rhodium chloride supported on silica gel is found to be more active than the homogeneous catalyst for ethylene dimerization. 165,166 As in the homogeneous catalyst hydrogen chloride remarkably enhanced the catalytic activity. 1-Butene formed in initial stage is isomerized to 2-butene. The dimerization activity per unit weight of catalyst increases in the order silica gel supported > silica-alumina supported > alumina supported.

The active rhodium species of the supported catalysts is the surface compound 24 formed from rhodium chloride and the surface silanol according to eq 14.

The high dimerization activity is due to the ligand effect of Si-O- on rhodium. Activation energy for the dimerization is calculated as 7 kcal/mol which is about half of that obtained by using the homogeneous cata-

[Rh(SnCl₃)₂Cl₄]³⁻ immobilized on AV-17-8 anion-exchange resin is highly active, stable, and selective catalyst for the dimerization of ethylene to cis- and trans-2-butenes in acidic media. 167 A mathematical model is derived to describe the process in terms of the ethylene pressure, temperature, and reaction time. The optimum yield of butenes is 88%. A cis/trans ratio of 1:2.7 is obtained after 6 h at 75 °C and 42 atm of ethylene.

6. Palladium

Use of palladium complexes in ethylene dimerization is less prevalent presumably because of its low activity and high cost.

Palladium chloride dimerizes ethylene at 20-70 °C and 1-40 atm to yield butenes with 90% selectivity. 168 It has been suggested that this compound initiates the dimerization in the presence of hydrogen chloride by a mechanism (Scheme XIX) analogous to that of Friedel-Crafts catalysis.

The dimerization of ethylene into n-butenes by means of tetrachlorobis(ethylene)dipalladium in nonhydroxylic media (benzene or dioxane) has been attempted. 169 Other palladium salts (fluoride, bromide, iodide, nitrate) tested in the dimerization of olefins do not form complexes of the type $(C_2H_4)_2Pd_2X_4$. Palladium cyanide dimerizes ethylene twice as slowly as

SCHEME XIX. Dimerization of Ethylene Catalyzed by PdCl₂ in the Presence of Hydrogen Chloride

SCHEME XX. Dimerization of Ethylene by PdCl₂

$$\frac{25}{\text{CH}_2} \text{CH}_2$$

$$\text{CH}_2$$

PdCl₂, probably on account of deactivation of the catalyst by a polyethylene deposit formed along with the dimer.6

The solvents used in these dimerization reactions dictate the activity of the catalysts. Besides benzene and dioxane, acetic acid, 169,170 halogenated hydrocarbons, 168,170,172 nitro derivatives, 170,171 sulfones, tetrahydrofuran, ethyl acetate, phenol, dimethylformamide, hydroquinone, catechol, benzyl alcohol, salicyclic acid, anisole, and acetone¹⁷⁰ have been used. On solvents like benzene and chlorohydrocarbons and in highly polar solvents like dimethyl sulfoxide and dimethylformamide dimerization does not occur. The reaction proceeds smoothly in solvents containing oxygen atoms. The dissociative solvents like phenol and acetic acid show high solvent effects. In carboxylic acids the rate of dimerization decreases with an increase in pK_a . Use of deuterated acetic acid as a solvent shows that the dissociated anion is taking part in the reaction. The rate of reaction follows the order weakly dissociative solvent > dissociative solvent > nondissociative solvent.

An important contribution to the mechanism (Scheme XX) of the dimerization by palladium is due to Ketley and co-workers. According to them in the first step solvents like ethanol acting as weak ligands or additives will cause the opening of the chloride bridges of the Kharasch complex 25 resulting in the formation of complex 26 under a positive pressure of ethylene. Now complex 26 can undergo geometric isomerization bringing the two ethylene molecules into position next to each other. The detailed mechanism of the conversion of 27 to 28 is far from clear, no evidence having been obtained of an intermediate metal hydride. Ketley and his co-workers have postulated the transient formation of a Pd-H species. This can arise from a vinylic hydrogen abstraction by the metal (27 \rightarrow 29 \rightarrow 28).

SCHEME XXI. $(\eta$ -Arene)PdAl_mCl_nL₂-catalyzed Dimerization of Ethylene

The dimerization of ethylene by Pd(BzCN)₂Cl₂ has been reported by Barlow and Bryant.¹⁷³ Dimerization and the accompanied isotopic exchange of ethylene have been studied with Pd(BzCN)₂Cl₂ in benzene.¹⁷⁴ Both the reactions take place after an induction period, the extent of which is reduced by the presence of a hydrogen releasing olefin such as 3-methyl-1-butene. The kinetics of dimerization is first order in ethylene, and the rate does not immediately respond to change in ethylene pressure. The reaction product is exclusively butenes with a composition of 1-butene (4%), cis-2-butene (36%), and trans-2-butene (60%) which is close to the value corresponding to the equilibrium of isomerization.

 $(\eta\text{-Arene})\text{PdAl}_m\text{Cl}_{n-2}$ (arene = benzene, toluene, p-xylene, m=1, n=4; arene = benzene, m=2, n=7) catalyzes the dimerization of ethylene (85–90%) at room temperature. The suggested mechanism (Scheme XXI) for this reaction involves the substitution of one arene unit by ethylene followed by coupling of two ethylene molecules. The evolution of 30 can be supported to proceed through a hydride transfer process (31) producing butene and, in the presence of ethylene, again 32.

Palladium chloride supported on silica gel and γ -alumina are active for the dimerization of ethylene. ¹⁷⁶ PdCl₂(Me₂SO)₂¹⁷⁷⁻¹⁷⁹ and K⁺PdCl₃⁻(Me₂SO) on KSH-2 silica gel¹⁷⁹ catalyze ethylene dimerization. The yield of dimer and selectivity are high with use of 0.1% dimethyl sulfoxide complex precipitated from acetone at 90 °C and with 0.3% ionic complex precipitated from chlorobenzene at 100 °C.

7. Iridium and Platinum

IrCl₃ in alcohol medium is capable of dimerizing ethylene to 95-99% 2-butene and 1-5% 1-butene. 161

Pt(PPh₃)₄ supported on heterogenized polystyrene¹⁸⁰ or *p*-chlorostyrene-diviynlbenzene copolymers along with BF₃·OEt₂ in hexane medium dimerizes ethylene to a mixture of butenes.

Table II summarizes the available published and patent literature. Some representative kinetic data for the dimerization of ethylene are also summarized in Table III.

IV. Catalytic Dimerization of Propylene Using Transition-Metal Complexes

The versatality of the dimerization of propylene is very much evident from the fact that the products individually or a mixture of them find extensive applications. The dimerization of ethylene essentially involves the addition of a C-H bond of one olefin molecule across the double bond of a second one. On the other hand, in the dimerization of propylene four products can be possible if only the vinylic C-H bonds are considered, two products involving a C-H bond of the methylene carbon and another two products involving a C-H bond of the methine carbon. The major products of dimerization are n-hexenes, 4-methylpentenes, 2-methylpentenes, and 2,3-dimethylbutenes. The selectivity of the products depends upon the metal, the ligands, and the mode of activation of the olefin.

Pilot scale as well as industrial scale (IFP dimersol process) dimerization of propylene using organometallic catalysts have been reported. The product compositions, mechanisms, and reaction conditions of this reaction are discussed together with the various homogeneous and supported metal complex catalysts. 32,113,140,352-361

A. Group 11 (IB) and 12 (IIB) Elements

CuAlCl₄ and Cu₂Cl₂ in the presence of Et₂AlCl³³ in isooctane medium catalyzes the dimerization of propylene at atmospheric pressure to give trans-4-methyl-2-pentene (30.4%), hexenes (27.4%), and 2-methyl-2-pentene (29.9%) as major products and cis-4-methyl-2-pentene (4.5%), 2-methylpentane (1.3%), 4-methyl-1-pentene (1%), and 2-methyl-1-pentene (0.6%) as minor products. AgAlCl₄ and ZnAl₂Cl₈ with EtAlCl₂ or Et₂AlCl is also used for conversion of propylene to trans-4-methyl-2-pentene and 2-methyl-2-pentene.

B. Group 13 (IIIA) Elements

1. Boron

A patent report³⁵⁹ is available on the dimerization of propylene in presence of BBu₃-MR_{n-m}H_m (M = Al, Ga, In, Be, Mg, Zn; R = monovalent hydrocarbon radical; n= valence of metal; m = 0-3) at 195-200 °C. Organoborane promotes the isomerization of the product to an α -olefin which is stabilized by shifting an alkyl group to form selectively 2-methyl-1-pentene.

2. Aluminum

The dimerization of propylene by alkylaluminum proceeds via carbanion intermediate. ¹⁵¹ In the reaction between propylene and Al-i-Pr₃ initially an unstable

alkylaluminum compound is formed³⁶⁰ (eq 15). This then reacts with propylene according to eq 16.

$$\begin{array}{c} \text{CH}_{3}-\text{CH}_{2}\text{CH}_{2}\text{AI}\Big< \bullet \text{ C}_{3}\text{H}_{6} \longrightarrow \text{CH}_{2}-\text{CH}_{2}-\text{CH}_{2}\\ & \text{CH}_{3}-\text{CH}-\text{CH}_{2}\text{AI}\Big< & \text{(15)} \end{array}$$

$$\begin{array}{c} \text{CH}_{3}-\text{CH}_{2}-\text{CH}_{2}\\ \text{CH}_{3}-\text{CH}_{2}-\text{CH}_{2} & \text{CH}_{3}-\text{CH}_{2}-\text{CH}_{2} & \text{CH}_{3}-\text{CH}_{2}-\text{CH}_{2} & \text{AI}\Big< & \text{CH}_{3}-\text{CH}_{2}-\text{CH}_{2} & \text{CH}_{3}-\text{CH}_{2}-\text{CH}_{2}-\text{AI}\Big< & \text{CH}_{3}-\text{CH}_{2}-\text{CH}_{2} & \text{CH}_{3}-\text{CH}_{2}-\text{CH}_{2}-\text{CH}_{2} & \text{CH}_{3}-\text{CH}_{2}-\text{CH}_{2}-\text{CH}_{2} & \text{CH}_{3}-\text{CH}_{2}-\text{CH}_{2}-\text{CH}_{2} & \text{CH}_{3}-\text{CH}_{2}-\text{CH}_{2}-\text{CH}_{2} & \text{CH}_{3}-\text{CH}_{2}-\text{CH}_{2}-\text{CH}_{2}-\text{CH}_{2} & \text{CH}_{3}-\text{CH}_{2}-\text{CH}_{2}-\text{CH}_{2}-\text{CH}_{2}-\text{CH}_{2}-\text{CH}_{2}-\text{CH}_{2}-\text{CH}_{2}-\text{CH}_{2} & \text{CH}_{3}-\text{CH}_{2}-\text$$

If the propylene dimer 2-methyl-1-pentene is taken out of the reaction mixture, the mechanism of the process becomes catalytic and a small amount of the alkylaluminum compound will be sufficient to dimerize the propylene. $^{361-363}$ In the dimerization of propylene at high temperatures and pressures using a AlPr₃ catalyst, it is reported that the integrated contact number K_0 is the most convenient and reliable control parameter for the automatic process control. 364 It determines both the selectivity of the process and the degrees of conversion. Calculations and experimental data show that optimum process conditions are achieved at $K_0 \approx 2-4$.

Schmidt and co-workers³⁶⁵ have reported the effect of organoaluminum compounds on the catalytic properties of complex catalysts used in the dimerization of propylene. The selectivity for the process is strongly dependent on temperature, pressure, and contact time.^{362,366–368} In a continuous process of the dimerization of propylene at 200 atm with AlEt₃ activation it is observed that the yield of dimer increases with temperature.³⁶⁹ Studies on the dimerization kinetics^{370,371} have shown that the reaction order with respect to propylene is close to unity. Activation energies of 11.7³⁷⁰ and 14 kcal·mol^{-1 371} have been reported.

The Ziegler dimerization of propylene is used as the first stage in the production of isoprene from propylene. 362,366-368,372 The Goodyear Tire and Rubber Co., which produces 2-methyl-1-pentene on an industrial scale, has carried out extensive research on the use of a propylene dimer as a starting material in the industrial synthesis of isoprene. 373

C. Group 14 (IVA) Elements

There is a patent³³ on PbAl₂Cl₈-EtAlCl₂ or Et₂AlCl catalyzed dimerization of propylene to *trans*-4-methyl-2-pentene and *n*-hexenes. Higher activities at moderate temperatures and pressures are observed when compared with other Friedel-Crafts catalysts.

D. Group 4 (IVB) Elements

1. Titanium

Propylene dimerization has been achieved⁴⁶ by using an AlR₃-Ti(OR)₄ system with an AlR₃/Ti(OR)₄ ratio < 10. Ti(acac)(OR)₃, where R = butyl or isopropyl, with AlEt₃³⁷⁴ at 60 °C under 8.5 atm of propylene gives 4-methyl-1-pentene (43%), 4-methyl-2-pentene (1.6%), n-hexene (9%), and 2-hexene (46.4%). (n-C₄H₆)₂Ti-

SCHEME XXII. Dimerization of Propylene Catalyzed by $(\eta-C_4H_6)_2Ti(dmpe)$

(dmpe) catalyzes the dimerization of propylene to 2,3-dimethyl-1-butene, suggesting metallacycle formation (Scheme XXII) as an intermediate in the reaction.⁸¹

The dimerization of propylene occurs as a side reaction during propylene polymerization using titanium trichloride catalyst.³⁷⁵ Several possible mechanisms of dimer formation are discussed. In the presence of a commercial catalyst dimer formation is 50–100 times higher than that in the presence of microspherical TiCl₃ catalyst obtained in the laboratory by reduction of TiCl₄.

2. Zirconium

(η-C₄H₆)₂Zr(dmpe)⁸¹ dimerizes propylene to 2,3-dimethyl-1-butene by a process similar to the titanium analogue. A process for the conversion of propylene to C_6 and higher α -olefins by $(\pi$ -allyl)ZrBr₃ and (benzyl)ZrBr₃ in the presence and absence of Et₂AlCl or EtAlCl₂ has been reported.³³² Zirconium(IV) acetylacetonate with Et₃Al₂Cl₃ and PPh₃ or PBu₃ at 65 °C catalyzes the dimerization of propylene.³⁷⁶ Molar ratios of monophosphine to zirconium of about 1-10:1 and Lewis acid to zirconium of 1-40:1 are preferred. Use of multifunctional phosphines such as a 1,2-bis(diphenylphosphino)ethane in place of the unidentate phosphine in the catalyst composition shows no catalytic activity for the dimerization of propylene. Apart from zirconium(IV) acetylacetonate zirconium salts of cyclic and aromatic carboxylic acids like zirconium cyclohexene carboxylate, zirconium phenylacetate, zirconium benzoate, and zirconium phthalates can be used.

E. Group 5 (VB) Elements

1. Niobium

There is a patent on the $RR^1_nR^2NbA_m$ (R = cyclopentadienyl: R^1 = benzyl; n = 0, 1; R^2 = Me₃CCH, PhCH; A = halogen; m = 1, 2)–YR³₃ (Y = N, P, AS, Sb, Bi; R^3 = alkyl, aryl) catalyzed dimerization of propylene in decane medium.³⁷⁷

2. Tantalum

 β,β' -Disubstituted and α,β' -disubstituted tantalacyclopentane complexes are intermediates in the se-

cat.	reactn condtn	products	comments	ref
		Aliminim		
$(C_3H_5)_3A_1$	gas phase, 160–230 °C	1-butene, 2-butenes		35
$(C_2H_5)_3AI$ -Ni salts	4	1-butene		39, 181
$(C_2H_5)_3A_1$		1-butene, C ₆ and C ₈ alkenes	conversn >20%	43
$(C_2H_5)_3AI-(C_2H_5)_2AIX$ (X = halogen or alkoxy	hydrocarbon solvents	1-butene, α -olefins containing up to 20		182
group)	No 701 - 11-11-	carbon atoms		9
(V2H5)3A1	etnylene = 500 psig. 125 °C, 5.5 min	1-butene (48.3%), 1-nexene (31.1%), 1-octene (16.4%), C_{10} – C_{14} α -olefins (3.5%)		183
$R_{r}AlR'_{3x}-R_{2}SnR'_{2}$ (x = 2;	ethylene = 450 psig, nonane,	1-butene (31%), trans-2-butene (36%),		184
$K = aikyi$; $K' = naiogen$) R_2A_1 ($R = C_{1,c}$ alkyl or aryl)	100-105 °C, 1.5 n hydrocarbon solvents	cis-z-butene ($z0%$) 1-butene, hexenes		185, 186
$(\ddot{C}_2H_5)_3A$ l $-(\dot{i}\cdot\ddot{C}_4H_9)_3A$ l	tetradecane, 700 psi, 126 °C, 30 min	1-butene (22.0%), 1-hexene (58.7%), 1-octene (16.6%), 1-decene (2.6%)		187
	Ţ	Titanium		
$Ti(OR)_4-(C_2H_5)_3Al$		1-butene (60-99%), 2-butenes		44, 188, 189, 190, 191
$Ti(OR)_4$ - R_3 Al		1-butene, 2-butenes	R _o Al/Ti(OR) ₄ < 10; high selectivity to 1-butene	, 94
$\text{Ti}(0\cdot\mathbf{n}\cdot\mathbf{B}\mathbf{u})_4-(\mathbf{C}_2\mathbf{H}_5)_3\mathbf{A}\mathbf{I}$	n-heptane, 6–8 h, 60 °C	1-butene, hexenes		45
$Ti(OBu)_4-(C_2H_5)_3Al-PPh_3$ or $-PhC=CH$	toluene, argon, 0-20 °C	1-butene	max activity at $AI/Ti = 4$	3 22
$Ti(OBu)_4 \cdot (C_2H_5)_3A1$	toluene or n -heptane, 20 °C	1-butene	Ti(OBu) ₄ /(C ₂ H ₅) ₃ Al = 10;	62, 70
${\rm Ti}({\rm OR})_4{ m -R}_9{\rm Al-additives}$		1-butene, 2-ethyl-1-butene,	00.00 - 00.0 W	58, 76, 192
$Ti(OBu)_4-R_3AI$ (R = Me, Et, Me ₂ CHCH ₂)	n-heptane	1-butene, hexene, and polymers	$(C_2H_5)AI/Ti(OBu)_4 = 4; E_a =$	69, 72, 193
$Ti(O\text{-}i\text{-}Pr)_4\text{-}Ai(C_2H_5)_3$	<i>n</i> -heptane, 7.12 atm. 90 °C,	1-butene (>90%), 2-butenes ($\sim 1.5\%$),	Al/ $M = 5.6$; butene-1 yield is	194
$\mathrm{Ti}(\mathrm{OBu})_{4^{-}}(\mathrm{C}_{2}\mathrm{H}_{5})_{3}\mathrm{Al}$	diethyl ether or dibutyl	nexenes (2-4%), polyeunylene 1-butene	120 g/g of cat. 3 kg of 1-butene/g of Ti(OBu) ₄	67
Ti(OBu)4-(C ₂ H ₅) ₃ Al	pentane (27-37 °C), 40-60 °C	1-butene	AI/Ti = 3	198
Ti(OBu),-(C ₂ H ₅),3Al Ti(OBu),-(C ₂ H ₅),3Al-Ph ₃ CCl	pentane/isopentane n -heptane or dichloroethane, 20 °C	1-butene, hexenes, higher olefins 1-butene	solv/cat. wt ratio is 10-1000:1 $E_{\rm a}=11.3~{\rm kcal/mol}$	199 71
Ti(OR),-R3AL-electron donor additives	polar solvents	1-butene	selectivity is high with polar solvents and electron donor additives	73
$Ti(OBu)_4$ - $(CH_3)_3A$] $Ti(OBu)_4$ - R_3A 1 (R = alkyl, aryl)	deuterated ethylene hydrocarbon solvents, 0-100 °C, 0.2-15 atm	I-butene, deuterated butenes I-butene		74 200
$Ti(OR)_4$ - R_3AI (R = normal and branched alkyls)	ethyl chloride	1-butene	selectivity to 1-butene is 98%; $E_s = 12.6 \text{ kcal/mol}$	75, 201
Ti(OR) ₄ -R' ₃ Al (R = Bu, Pr, pentyl, phenyl; R = isobutyl, propyl, ethyl)		1-butene	activity of cat. is of the order when R = butyl > pentyl > propyl > isopentyl > phenyl; selectivity of the catalyst is in the reverse order.	58, 202, 203
$\begin{split} Ti(OR)_4 - R'_3 A I &(R = C_2 H_5, C_3 H_7, C_4 H_9, C_6 H_{14}, C_6 H_{13}, \\ &C_7 H_7, C_2 H_4 C I; R' = C_2 H_5, C_4 H_9) \end{split}$	ethyl chloride	1-butene	for (C ₂ H ₅) ₃ Al-Ti(OBu) ₄ system 98% selectivity for 1 button production	77
$(BuO)_n Ti(ac)_{4-n} (n = 2, 3;$	CH_2Cl_2 or toluene,	1-butene (65%), hexenes (35%)	order of reactivity is	78

halogenated hydrocarbons > aromatic hydrocarbons > alinhatic hydrocarbons		e (12–20%) 80, 205, 206, 307	5. N		, butadiene	ainder is 209, 210, 211, arts of 212		ment, 80% 55, 213 ment	22.0%), 214	215		8 216 217	AI/Ti = 6.5 and $P/Ti = 3$	mer 312 g of 1-butene/g of 219, 220, 221	98	8	11(Obu) ₄ 54	225	fins, 226	Al/M molar ratio = 6.1, 227 1-butene yield is $38 g/g$ of cat	Al/M molar ratio = 2.9, 227 1-butene yield is 35 g/g	Al	229	08
	1-butene, 2-butenes, polymer	1-butene (80-88%), 1-hexene (12-20%)	1-butene (88–95%) 1-butene <i>cis-2</i> -butene 3-methyl-1-	pentene, 2-methyl-1-pentene n-butane (7%), 1-butene (15.4%), cis-	and trans-2-butene (46%), butadiene (31.6%)	1-butene (60-99%), the remainder is 2-butenes and small amounts of	n-hexenes	85% 1-butene with air treatment, 80% it 1-butene without pretreatment	∓	1-butene	,	1-butene, mixture of hexenes 1-butene	1-butene (99.5%), polymer (0.1%)	1-butene, higher olefins, polymer	1-butene, mixture of hexenes	Ξ	polymer and z-butenes 1-butene (88-95%)	, 1-butene (94%)	1-butene (94.7%), higher olefins, polyethylene (5.3%)	1-butene	1-butene	1-butene (>90.9%), hexenes (7.9%), butane (1%)	1-butene	butenes
n-heptane, -100 °C	cyclohexane, ethylene = 500	5 kg/cm ² , 30–32 °C, 4–5 h	heptane/decane/toluene	toluene, 70 °C, 30 min		diesel oil, n -heptane, ethylene = $1-10$ atm.	20-100 °C	n-heptane, H, O, N, or mert gas pretreatment of catalyst	n-heptane, hydrogen and ethylene mixture = 2.5	atm, 57 °C, 1 h 0.2-2.0 equivalent of oxygen based on cocatalyst: organic	solvent	pentane	<i>n</i> -heptane, 50 °C, ethylene = $\frac{20}{20}$ etm	n-heptane	hydrocarbon solvents	ethyl chloride, $C_2H_4 = 3$ atm,	30 °C, 30 min heptane/decane/toluene/ ether/THF	toluene, 65-70 °C, 20-60 atm,	n-heptane/ n -decane/ethyl chloride, 20–40 °C, 0.55–10 atm. 96–120 min	heptane, 7.12 atm, 90 °C, 120 min	heptane, 7.12 atm, 90 °C, 120 min	isopropylcyclohexane, 30 °C, 3 h	heptane, 30 °C, 2 h, othylone = 5 Fg/cm^2	(9) Out of the contract of th
ac = acetylacetonato)/ $TiCl_4-(CH_3)_3Al_2Cl_3$	$Ti(O-n-Bu)_4-[(CH_3)_2CH]_3A]$	$\mathrm{C}_p\mathrm{TiCl}_2$ -amalgams of alkali metals	$C_p\mathrm{TiCl}_2$ - $(C_2\mathrm{H}_3\mathrm{Al}\mathrm{-Ti}(\mathrm{O}\text{-}n\mathrm{-Bu})_4$ $(n\!-\!\mathrm{C},\mathrm{H}_3\mathrm{-Ti}(d\mathrm{mn}\mathrm{e})$	(1 4+4)2 x (4-4)2 x (Ĺ	$Ti(OR)_4-R'_3Al$ (R = Bu; R' = hexyl, Et, Bu, i-Bu)		$\mathrm{Ti}(\mathrm{O}\text{-}n\text{-}\mathrm{Eu})_4\mathrm{-}\mathrm{R}_3\mathrm{Al}$	$\mathrm{Ti}(\mathrm{O} ext{-}n\mathrm{-}\mathrm{Bu})_{4^-}(\mathrm{C}_2\mathrm{H}_{5})_{3}\mathrm{Al}$	titanium alcoholate-R ₃ Al		Ti(OBu)_(-(C,H,),Al-CH,OCH,CH,OCH, Ti(OR),-R,Al-C,H,OH/C,H,OH	Ti(O-n-Bu) ₄ -(C ₂ H ₅) ₃ Al-P(OBu) ₃	Ti(OR) ₄ -R ₃ Al-oxygen/amines	$Ti(OR)_4$ (R = C_{1-6} alkyl or aryl)	$Ti(OR)_4 - R_3AI - C_p TiCI_2/$	o-pnenyieneolamine (BuO), Ti-(C ₂ H ₃), Al; (BuO), Ti-(C ₂ H ₃), Al; (Ti(Ru), -HA)(i, Ru).	Ti(OR)4-H-AINMe2/H-AINBu2/	$ \begin{array}{l} \text{Ti}(\text{OR})_{4^{-}}(\text{C}_{2}\text{H}_{5})_{3}\text{Al}/\text{AiH}(i\text{-C}_{4}\text{H}_{9})_{2} \\ \end{array} $	${\rm Ti}({\rm OC_2H_5})_2({\rm acac})_2 - ({\rm C_2H_5})_3{\rm Al}$	$Ti[N(CH_3)_2]_4 - (C_2H_5)_3A]$	$(\pi\text{-}C_bMe_b)\text{Ti}(OR)_3\text{-}(C_2H_5)_3\text{Al}$	$(OR)_3Ti(acac)-R_3Al-R_2HAl$	L_9TiH_3 (L = Me,PCH,CH,PMe,)

ied)
Continu
<u> </u>
BLE
⋖

tes	reactn condtn		-4	J
car.	ובשבתו בסוותתו	products	comments	rei
$\mathrm{VCl}_{3^{-}}(i\text{-}\mathrm{C}_{4}\mathrm{H}_{9})_{3}\mathrm{Al}_{2}\mathrm{Cl}_{3}$	heptane, 30 min, 60 °C, 3 atm	Vanaduum 1-butene (7%), trans-2-butene, (47%), 6:2-butene, (41%), hexenes (3%), 6:4-and (0.6%), hither olders (1.4%)		92
$\mathrm{VO}(\mathrm{O}\text{-}i\text{-}\mathrm{Pr})_{3}\text{-}(\mathrm{C}_{2}\mathrm{H}_{5})_{3}\mathrm{Al}$	heptane, 7.12 atm, 90 °C, 160 min	occare (0.0%), ingner otenns (1.4%) 1-butene	Al/M molar ratio = 3.8, yield 80 g/g of cat.	227
(C ₅ H ₅ N) ₃ CrCl ₃ /(4-EtC ₅ H ₄ N) ₄ CrCl ₃ / [(PBu ₃) ₃ CrCl ₃] ₂ /(Ph ₃ PO) ₃ CrCl ₃ / Cl ₂ (4-EtC ₅ H ₄ N) ₂ Cr(NO) ₂ - (C ₂ H ₅)AlCl ₂	17 °C, 750 psig, 1 h	Chromium butenes (82%)		99, 100, 101
MnCl ₂ /Mn malonate/Mn acetylacetonate/MnSO ₄ /Mn(NO ₃) ₂ / Mn(OMe) ₂ -(C ₂ H ₅)AlCl ₂ / (C ₂ H ₅) ₃ Al ₂ Cl ₃ /Br ₃ Al/(C ₂ H ₅) ₃ Al	chlorobenzene, argon, 50 kg/cm², 80–85°C, 1 h	Manganese 1-butene (36.6%), trans-2-butene (42.2%), cis-2-butene (21.2%)	Mn/Al ratio = 1:3	104
$R_p Fe - R'_m AlX_{3-m}$ -phosphine (R = acyl, allyl, cyclopentadienyl; p = valency of metal; R' = alred $X = \frac{1}{2}$ $X = \frac{1}{2}$	n-heptane/benzene, -50 to 150°C, 1-25 atm	Iron butenes		105
FeCl ₂ -R ₃ Al ₂ X ₃ (R = alkyl; $X = Cl, Br$)	chlorobenzene, argon, 30 kg/cm², 60–70 °C, 15 min	1-butene, trans-2-butene, cis-2-butene		106
Co(acac) ₃ -(C ₂ H ₅₎₂ Be	toluene, 8 kg/cm ² , 30 °C, 1 h	Cobalt 1-butene (4%), 2-butene (96%)		231
Co(acac) ₃ -BuLi	benzene	butenes	max conversn with 6:7	232
$\mathrm{Co}(\mathbf{acac})_3 - (\mathrm{C}_2\mathrm{H}_5)_3\mathrm{Al-PPh}_3$	30 °C	2-butenes (95%), 1-butene (5%)	selectivity is 99.5%; AlR ₃ /Co = $\frac{1}{2}$	108, 130
Co(acac) ₂ -BuLi	benzene, 30 °C, 50 psig, 4 h	butenes	2-5 3:1 Li/Co(III) gives 4 mol of butene whereas 5:7 Li/Co(III)	233
Co(acac) ₂ –(C ₂ H ₆) ₂ AlOC ₂ H ₅ –BuLi	benzene/cyclohexane, 700 psi, 75 °С	1-butene (2%), trans-2-butene (17.2%), cis-2-butene (5.5%) (gas phase), butenes (29.4%),	gives 66 mol of butenes	234
$\mathrm{Co}(\mathrm{acac})_2 - (\mathrm{C}_2\mathrm{H}_5)_3\mathrm{Al}$	toluene, 50 °C	1-nezene (0.5.70) (nquia pinase) 1-butene, 2-butenes	Co/Al = 1.9, selectivity to 1-butene is 66.6%, con-	235
$\mathrm{Co}(\mathrm{acac})_{\mathrm{z}}\mathrm{-AlCl}(\mathrm{C_{\mathrm{z}}H_{\mathrm{5}}})_{\mathrm{z}}\mathrm{-PPh_{\mathrm{3}}}$	toluene, 50 °C	1-butene, 2-butenes	version to butenes is 1.8% $Co/Al/PPh_3 = 1.9:3$; selectivity to 1-butene is 16.8%;	235.
$Co(acac)_2$ supported on $Al_2(PO_4)_3-(CH_3)_3Al$	26 °C, 35 bar	1-butene, α -olefins	conversn to butenes is 39.7% selectivity to 1-butene is 98% activity is 60 e/mol of Co hr	236
$R_p \text{Co-R}'_m \text{AlX}_{3-m}\text{-phosphine}$ (R = acyl or allyl or cyclopentadienyl, p = valency of metal. R' = alkvl. X = halozen)	n-heptane/benzene, -50 to $+150$ °C, 1.25 atm	butenes	1800 1800 1800 1800 1800 1800	105
$CoH(N_2)(PPh_3)_3$ $CoX(PPh_3)_3-BF_3\cdot OEt_2-AlCl_3/SnCl_2$ $(X = Cl^-, Br^-, I^-)$	25 °C bromobenzene/iodobenzene/ o-dichlorobenzene/ chlorobenzene/	2-butenes (95-99%) C ₄ distribution is 1-butene (90%), trans-2-butene (4.5%), cis-2-butene (5.5%)	order of reactivity is bromo- benzene > iodobenzene > o-dichlorobenzene >	109 110, 111

	o-chlorotoluene		chlorobenzene > 0-	
$\begin{array}{l} CoBr_2(PPh_3)_2 - (C_2H_5)AlCl_2 \\ [Co(C_2H_4)(PPh_3)_3]_2 \end{array}$	toluene, 30 °C, 2 h benzene, 20 °C, 1 atm	1-butene, 2-butene trans-2-butene (63.0%), cis-2-butene (63.0%),	chlorofoluene, B -Co ratio is 1 1-butene/2-butene ratio = 1:20 $E_a = 12.4$ kcal/mol $\Delta H = 11.8$	237 112
bochmite/bayerite/ γ -Al ₂ O ₃ impregnated with bis(n -butylsalicylideniminato)-cobalt(II)-(C_2H_b)3Al ₂ Cl ₃	chlorobenzene	(4*.5/0), 1-Ducene (1.5/0), nexenes (10/0) butenes, hexenes, octenes	KC21/ MO1 A2 = 10 C21/ (MOI-Y.)	238
$(\pi$ -allyl)nickel halide- R_3Al $(\pi$ -allyl)nickel halide-TiCl $_4/VOCl_3$	toluene, 8 atm, 55 °C, 3 h	Nickel 2-butenes (major), 1-butene 1-butene (21%), trans-2-butene (52%), cis-2-butene (27%), hexenes, polymer		239, 240 241, 242
(π-allyl)nickel complex-AlCl ₃ alkylbenzene complex		(minot) butenes (major), hexenes, polymer		243
(r-allyl)nickel halide–AlCl ₃ / AlBr ₃ /AlRCl ₂ –PR ₃		butenes		1, 118, 134, 143, 147, 148,
(π-allyl)nickel halide supported on Al.O ₂ -(C ₂ Hε) ₂ Al ₂ Cl ₂		1-butene, 2-butenes		244, 245, 241 159, 248
(#-C ₆ H ₅).«C ₆ H ₇).Ni (#-C ₆ H ₅)(#-C ₆ H ₇)Ni (#-C ₆ H ₅)(#-C ₅ H ₇)Ni	200 °C, 600 psi 145–150 °C benzene, 150 °C, 30 min	2-butenes (major), 1-butene (minor) 1-butenes 82-90% butenes (78%), hexene (15%), and	ethylene conversn is 70–90% ethylene conversn is 90%	2, 152, 153 126 249
$(\pi - C_bH_b)(\pi - C_bH_{\gamma})$ Ni supported on SiOAl O.	heptane, 50–75 °C, 1 h	butenes, hexenes, octenes	ethylene conversn is 84%	250
$(\pi$ -C ₅ H ₅) $(\pi$ -C ₅ H ₇)Ni supported on SiO ₂ -Al ₂ O ₃	14-21 atm, 50-60 °C, 1 h	C_4^- (47%), C_6^- (27%), C_8^- (9%), $C_{1,0}^-$ (7%) $C_{1,0}^-$ (10%)	1-butene in C_4^- is 95%	251
Ni(acac) ₂ -R _{6-x} Al ₂ Cl _x -PPh ₃ ($x = 2, 3, \text{ or } 4$)		butenes	97.3% 1-butene at ethylene conversn of 4.1%; 95% 1-butene at ethylene conversn of 48%.	125, 130, 252, 253, 254, 256, 257
$Ni(acac)_2-(C_2H_6)_3Al-BCl_3$	heptane, 20 min, 60 °C, 15 kg/cm^2	butenes		258
Ni(acac) ₂ -(C ₂ H ₅) ₂ AlCl-PPh ₃	toluene, 50 °C	1-butene, 2-butenes	[Ni]/[Al]/[PPh ₃] = 1:9:3; amount of butenes is 48.6%; 1-butene in \mathbf{q}_{-} is 5%;	235
$Ni(acac)_2 - (C_2H_5)_3Al_2Cl_3 - PR_3 \; (R = Bu, Ph, \\ PhO)$		butenes	z-outene 18 95% with phosphines 85.5–55.1% of butenes whereas with phosphites 77.2–95.8% hutenes are formed	133, 136, 138, 156, 157
Ni(acac) ₂ -(C ₂ H ₅) ₃ Al- (C ₃ H ₋ C) ₃ Al-PhC=CH	xylene, 110 °C, 60 atm, 5 h	1-butene (86%)		259
$Ni(acac)_2-(C_2H_5)_3AI$	60-150 °C, 20-80 atm	1-butene, 1-hexene, 2-butene, 2-hexene	Al/cat. ratio is 0.45-4.2 for	246
Ni(acac) ₂ supported on brominated polystyrene-BF ₃ ·OEt ₂ /(i·Bu) ₃ Al Ni(acac) ₂ supported on SiO ₂ -Al ₂ O ₃ or Al ₂		2-butenes (98%), 3-methylpentenes, 1-butene butenes	opanium yien oi i buene	119 261, 262, 263
Ni(acac), supported on inorganic oxide—(CH ₃),Al	toluene, >1 atm, 65 °C	1-butene, 1-hexene, 2-butene, 2-, 3-hexenes	selectivity is 90%; cat. activity is 60 g/mmol of nickel/h	264
Ni(acac) ₂ attached to Graft copolymer of (ethylene– propylene–dicyclopentadiene with 4-vinylpyridine)–(i-C ₄ H ₉) ₃ Al		1-butene (37%), cis-2-butene (26%), trans-2-butene (37%)		265

cat.	reactn condtn	products	comments	ref
Ni(acac) ₂ supported on (ethylene- nronvlene-vinyhorhornene)	20 °C, 2.5 atm	1-butene (80%), cis-2-butene (9%),		266
propyrene-vmymorbonnene) copolymer-ClAl(i-C ₃ H ₇) ₂ -PPh ₃		trans-2-butene (11%)		
nickel fluoroacetylacetonate— (C ₂ H ₁),Al(OC ₂ H ₂)		butenes		267
nickel salts-haloorganoaluminums- B(OR).	halohydrocarbons, -10 to	2-butenes		268
NiCl ₂ -Alc ₃ -PR ₃ /amine NiCl ₂ or Ni(OAc) ₂ -NaBH ₄ - phosphincharon orid	chlorobenzene, 20 °C HO(CH ₂) ₄ OH	butenes (78%), C_6 olefins (20%) C_4 and higher olefins (8–34%)		2 69 , 270 271
prospinito central actual NiCl ₂ -6H ₂ O-Ph ₂ PCH ₂ CO ₂ K-NaBH ₄	HO(CH ₂) ₄ OH, 75 °C, 750 psig	butenes (45%), C ₆ —C ₁₀ olefins (48%),	$Ni/ligand = 1$; $NaBH_4/Ni =$	272
NiX ₂ -Ph ₂ PCH ₂ CO ₂ H-NaBH ₄ -PPh ₃	HO(CH ₂) ₄ OH, 100 °C, 40 atm	C_{12} - C_{20} olefins (6.3%) C_4 - C_8 - (41%) , C_{10} - C_{18} - (40.5%) , C_{10} - C_{10}	2; activity = 2350 g/g of Ni/h	273-275
polymeric gel immobilized NiCl ₂ /Ni(NO ₃) ₂ - (C_2H_3) AlCl ₂		C20 (10.3%) butenes		276
$trans ext{-}(ext{PPh}_3)_2 ext{Ni}(\sigma ext{-aryl}) ext{Br}$	chlorobenzene/CH ₂ Cl ₂ , 0 °C, 1 atm	butenes		117, 277
NiBr(L)(PPh ₃) ₂ -BF ₃ ·OE' ₂ (I = Br, mesityl, naphthyl,		butenes	rate of dimerization increases in the order Br << mesityl <	114, 120, 127
(C ₆ Cl ₆)Ni(PPh ₃) ₂ Cl-AgClO ₄ -PPh ₃ (C ₆ H ₅)Ni(PPh ₃) ₂ Br-AgClO ₄	bromobenzene, 0 °C, 1 atm	butenes butenes	naphthyl < 0-tolyl selectivity is 80-100% max activity for AgClO ₄ /nickel	152 154, 278
(o-tolyl)Ni(PPh ₃) ₂ Br/ (1-naphthyl)Ni(PPh ₃) ₂ Br/	CH ₂ Cl ₂ , 0 °C, 5 min	butenes	comprex = 2	279
(mesityl)Ni(PPh ₃) ₂ Br-BF ₃ ·OEt ₂ NiX ₂ (PR ₃) ₂ -Al ₂ R _{6-x} Cl _x -haloalkane		butenes	[Ni]/[Al] = 1:20-85;	280, 281, 282
(x = 2, 3, or 4) NiCl ₂ (PBu ₃) ₂ -(C ₃ H ₄) ₃ A Cl-C ₂ -C ₁ , alkv] halide		hutenes	haloalkane/Al = 1-18:1	
LNiph ₂ P=CHBz NiX ₂ -PR ₃ -R',AIX _{3-n} supported on solid carrier (X = halogen, R = alkel, excloality) R' = R n		α -olefins butenes		284 285
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1				
NiCl ₂ (PBu ₃) ₂ supported on SiO ₂ -Al ₂ O ₃ -(C ₅ H ₄) ₂ AlCl	300 °F, 2 h	1-butene (12%), 2-butene (88%)	selectivity to butene is 68-73%	286
NiX_2 - PR_3 (pyridine/bipyridyl-RAIX, (R = alkyl)	chlorobenzene	butenes		287
$NiX_2(PR_3)_2 - Al_2R_{6-x}Cl_x$ (x = 2, 3, or 4)		1-butene, 2-butenes, hexenes,		150, 158
$HNiCl[P(i\text{-}PrO)_3] - (C_2H_5)_3Al_2Cl_3$		butenes		124
PhyPNi -L.CI	toluene/chlorobenzene, 25°C, 80 psi	cyclobutane (19.8%) and 1-butene (89.2%) in toluene medium whereas in chlorobenzene 99.4% butenes are	toluene favors cyclobutane and chlorobenzene favors 1-butene, but toluene with LiCl gives	155
Ni(PPh ₃)4-AlCl ₃ /AlBr ₃	chlorobenzene, 50 °C	1-butene (4.4%), trans-2-butene (68.5%),	Т-Бикепе	288
${ m Ni(PPh_3)_4}$ supported on polymer, ${ m BF_3^-OEt_2}$	hexane, 0 °C, 1 atm, toluene	butenes		121, 180, 289
polystyrene supported Ni(PPh ₃) ₄ -BF ₃ : OE ₁₋ (C ₃ H ₃ ,A ₂ C ₃ -PPh ₃		butenes, 3-methyl-pentenes		136, 156, 157
Ni(PCl ₃), AlBr ₃ -LiBu	chlorobenzene, argon, 1 atm, 20 °C, 30 min	1-butene and cis- and trans-2-butenes		116, 269, 290, 291

Ni(PPh ₃) ₂ (NO) ₂ –(C ₂ H ₅)AlCl ₂ Ni(CO) ₄ –PPh ₃ –(C ₂ H ₅) ₃ Al ₂ Cl ₃ supported on Al-O.		butenes, hexenes, octene C_4 hydrocarbons		292 293
Ni(CO),-(C ₂ H ₅) ₂ AlCl-(C ₂ H ₅)AlCl ₂ -PPh ₃	benzene, 400 psi, 101 min, 252 °C	butane (0.1%), 1-butene (8.35%), 2-butene (30.38%), higher olefins (35.72%)		294
Ni(CO) _x (PR ₃) _{t-x} -Al ₂ R _{θ-x} Cl _x (x = 2) Ni(CO) ₂ (PPh ₃) ₂ supported on Al ₂ O ₃ -SiO ₂ -(C ₂ H ₃) _n AlCl ₃ , (n = 1, 2)	aliphatic or aromatic hydro- carbon 20°-80° C, 2-20 atm	butenes butenes	cat./activator mole ratio is 8.736:1	290 295, 296
•		butenes butenes	maximum activity with BF ₃ /Ni mole ratio = 3 and AlCl ₃ /Ni mole ratio = 4	297 131
$ ext{Ni(ethylene)}_2(i ext{-PF}r_3)/ ext{Ni(ethylene)}$ - $(i ext{-PF}r_3)_2 ext{-BF}_3 ext{-OE}t_2 ext{-AIB}r_3$		1-butene, cis- and trans-2-butene, 3-methyl-1-pentene, 3-methyl-2- nentene trans-3- and trans-3-basenee	butenes and hexenes are in the ratio 2:1	122, 123
$(ethylene)_2Ni(i\text{-PP}r_3)\text{-BF}_3$ $NiL_2\text{-}(C_2H_3)AlCl_2\ (L=picoline)$	chlorobenzene, 80–100 psig,	butene (59%), hexene (35.7%), octene (6.9%)		129 292, 298
$NiL_{2r}(C_{2}H_{3})_{2}AICI$ ($L=o$ -phenylenediamine) $NiCL_{3}(3$ -picoline) ₂ supported on $SiO_{r}-AL_{3}O_{r}-(C_{r}H_{1})_{r}AICI$	10-30 °C, 5-20 atm	butenes butenes		299 286
$Ni(S_2^CNR_2^2) < C_2^L \cdot S_2^L$ $(R = \text{htty})$	chlorobenzene	butenes, hexenes, octene		292
Ni(π -L) ₂ X ₂ -Al ₂ R ₄ -Cl _x -PR ₃ ($x = 2, 3,$ or 4) (L = tetramethylexelohutadiene)	1 atm, 1 h, 20 °C	C ₆ olefins (17%), 1-butene (78%)		150, 158, 295, 300–305
Ni(COD) ₂ -CF ₃ COCH ₂ COCF ₃	toluene	butenes	mole ratio of cat. to additive is 0.5:1-2:1	306
Ni(COD) ₂ -CF ₃ CO ₂ H Ni(COD) ₂ -Ph ₂ PCH ₂ CO ₂ H	toluene, 10 h, 25 °C, 500 psi benzene. 75 °C. 550 psig. 4 h	butenes, higher α -olefins higher olefins	32 g of oligomers/g of cat./hv	307, 308 309
Ni(COD) ₂ -PPh ₂ CH ₂ COOH Ni(COD) ₂ -PPh ₂ CH ₂ COOH supported on Al ₂ O ₃ -SiO ₂	toluene, 25 °C, 50 bar 50 °C, 20 bar, 3 s	C_4 - C_{20} olefins	linearity (99%), α -olefins (99%) C_4 100% linear and 50–90% α -olefins, C_6 - C_9 80% linear	310, 311, 312 310
$Ni(COD)_2$ - PPh_3 - Ph_3P = $CHCOPh$	toluene, 50 °C, 50 bar	C ₄ -C ₃₀ olefins	and $48\% \ \alpha$ -olems linearity (99%) and α -olefins (98%)	284, 313
P CH2COOH	aromatic solvents	lpha-olefins (99%)	activity is 6000 mol of ethylene/mol of complex	260, 314
$NiX_2L_2-Al_2R_{6-x}Cl_x$ (L = hexamethyl-nhemhyramide $x=9.3$ or 4)		butenes		315
prospance anner, x = z, y, y, x y, NiBr ₂ /NiCl ₂ -hosphoric +ris/diamids-AIR / AIRX		butenes, hexenes		316
Victorial Control of C	n-heptane, 1 atm; 30 °C, argon	butenes, hexenes	Al/Ni ratio = 4:6	105, 317, 318
Ni oleate—(C ₂ H ₆) ₃ Al ₂ Cl ₃ —PPh ₃	tert-butyltoluene, 20 °C, 3 h	butenes (80%)	ethylene conversn is 48%; Ni/DDb, rotio = 1.9	319
Ni palmitate- $(C_2H_5)_3AI-$ Ph $C=CH$	110-130 °C, 40 atm, 200 h	1-butene	selectivity is high	320, 321, 322
Ni diisopropylsalicylate– Al ₂ R _{6-x} Cl _x ($x = 2, 3, \text{ or } 4$)	isooctane, 1 h, 0/30 °C	1-butene (5.8/10.8%), cis-2-butene (20.3/20.1%), trans-2-butene (53.2/52.5%), hexenes (20.7/16.6%)		323
Ni(RCO ₂) ₂ -R _m AlX _{3-m} -PX ₃ (R = alkyl, aryl; $m = 1, 2$: $X = \text{halogen}$	-50 °C to +150 °C, 25 atm	butenes		324, 325
bochmite/ \gamma-Al2O3 impregnated with	chlorobenzene	butenes, hexenes, octenes		326

TURNET I (COHOHOGO)				
cat.	reactn condtn	products	comments	ref
Ni N=CH 2/3A/2Cl3				
group VIII metal halides (R = H, Me, Cl; R = (CH ₂) ₂ NR ² R ³ , R ² =	0 °C, 20 min	butenes, hexenes		327
$\mathbf{R}^3 = \mathbf{H}, \text{ alkyl})$ $Ni(\mathbf{Me_2SO})_6 \cdot \text{NiCl}_4 - (C_2H_5)_3 \text{Al}_2 \text{Cl}_3 / C_1 \cdot \text{Mic}$	ethyl chloride	butenes (61%), hexenes (36%), octenes		328
$(C_2H_5)AUC_1$ $CpNi(C_2H_4)(C_2H_5)$	120 °C	(23%) butenes, hexene, octene		329
CuAlCt ₄ /Cu ₂ Cl ₂ /(C ₂ H ₅)AlCl ₂ / (C ₂ H ₅) ₂ AlCl		Copper butenes		33, 34
$\mathrm{ZnAl_2Cl_8^-(C_2H_3)AlCl_2}$		Zinc butenes		33, 34
$Zr(OR)_4$ -Al(C_2H_5) ₃ (R = Bu or C_2H_5)	diesel oil, 90 °C	Zirconium 1-butene (90%), hexenes (10%),		209, 330
$\begin{array}{l} Zr(O\cdot i\text{-}Pr)_4 - Al_2Cl_3(C_2H_5)_3 \\ Zr(O\cdot n\text{-}Bu)_2(OC_6H_4Cl\text{-}4)_2 - PPh_3 - (C_2H_5)_2AlCl \end{array}$	heptane, 80 °C toluene, 50 °C, 1 h 9 kg/cm 2	octenes C_4 , C_6 , C_8 , and higher α -olefins 1-butene (58.4%), 1-hexene (29%),	Zr/Al/P ratio = 1:10-25:1-3 Zr/Al/P wt ratio = 8.3:46:1	88 331
$Zr(OR)_4$ = R_x AI $X_{3,x}$ = PBu_3 (π -allyl) ZrB_{13} / C_aH_a CH $_3$ Cr $B_{1\gamma}$ -(C_aH_a) $_3$ AICI/	organic solvents	1-octene (12.6%) 1-butene C_4 and higher olefins		87 332
$(C_2H_b)AiCl_2$ L_2ZrH_3 (L = Me ₂ PCH ₂ -CH ₂ PMe ₂)	toloran 60 00 1 attended	butenes		68
C_{Pe}^{2L} $Zr(benzy)_{f^{-}}(C_{2}H_{5})_{3}Al_{2}Cl_{3}$ $(\eta^{-}C_{4}H_{5})_{2}Zr(dmpe) \cdot (C_{4}H_{6} = 1.3-hutadiane denne = $	toluene, 40–80 °C	lpha-butane, 1-butene, eunane $lpha$ -olefins 1-butene, 3-methyl-1-pentene,		20 81
$Me_2PCH_2CH_2PMe_2)$ $L_2NbH_5 (L = Me_2PCH_2CH_2PMe_2)$ $(C_6H_5)Nb(C_6H_8)_2$		Z-mearyr-r-propene Niobium butenes butenes (72.1%)		88 93
$[(\pi\text{-}C_6H_6)Mo(\pi\text{-}L)Cl]_2\text{-}(C_2H_5)AlCl_2$	benzene, 20 °C	Molybdenum butenes		102
RuCis	methyl alcohol, 500-800 atm, 130 °C	Ruthenium methyl alcohol, 500–800 atm, 10 h, 1-butene, 2-butenes, C., C., and higher 130 °C		160, 161
Ru(CO) ₂ Cl ₂ bonded to SiO ₂ or silica gel or Al ₂ O ₃ through silane derivatives containing amino		butenes		333

RhCl ₃ :3H ₂ O-HCl	alcohol	Rhodium 1-butene, 2-butenes		160–163, 334,
RhCl ₃ ·3H ₂ O RhCl ₃ /RhCl ₃ on SiO ₂ /RhCl ₃ on SiO ₂ –Al ₂ O ₃ /RhCl ₃ on Al ₂ O ₃ –HCl	СНСІ3	1-butene, 2-butenes 1-butene, 2-butenes	the activity is SiO ₂ supported cat. > SiO ₂ -Al ₂ O ₃ supported	555, 556 171, 337 165, 166
$ m RhCl_3-LiAlH_4-PPh_3$	benzene, 180 °C, 1050 bars,	1-butene, 2-butenes, C_{22} olefin	cat: A rayog supported cat.	338
(#-C ₅ H ₅)Rh(C ₂ H _J) ₂ [Rh(CO) ₂ Cl] ₂ but SiO ₂ or silica gel or	xylene	1-butene, 2-butenes butenes		162 333
A ₂ O ₃ or zeolite by use of suane derivatives Rh ₂ Cl ₂ (SnCl ₃) ₄ -HCl	ethanol/MeOH, 50-70 °C,	butenes		339
[Rh(SnCl ₃) ₂ Cl ₄] ³⁻ anchored on AV 17-8 anion-exchange resin-HCl	LO 4 delli	cis-2-butene (88%), trans-2-butene		167, 340
PdCl ₂ -HCl		Palladium 2-butene (95–99%), 1-butene (1–5%)		168, 337
PdCl ₂ -HCl	20-70 °C, 1-40 atm CH ₃ COOH, 55 atm, 10 hr, 90 °C	2-butene (95–99%), 1-butene (1–5%)		336, 337, 341, 342
PdCl ₂ -RNO ₂ PdCl ₂ -sulfones PdCl ₂ -CH ₃ CH(NO ₂)CH ₃	benzene, 18 h, 75 °C, 750 psig 1 atm, 40-50 °C, 5 h	2-butenes, 1-butene 2-butenes, 1-butene butenes (96.7%), hexene (0.7%),	conversn of ethylene is 80%	170 343 344
PdCl ₂	halogenated hydrocarbon/ RNO,	2-butenes, 1-butene		168, 170–172
PdCl ₂ (ethylene) Pd ₂ Cl ₄ (ethylene) ₂ [(\pi -methylally1)PdCl] ₂ -AgF ₄ -PBu ₃ polymer supported Pd(PPh ₃)-BF ₃ OBt ₂	dioxane/benzene hexane	butenes butenes, hexenes (<25%) butenes,		337 169, 345 346 180
Pd(CN) ₂ /PdF ₂ /PdDs ₂ /Pd(NO ₃) ₂ Pd(BZCN) ₂ Cl ₂	dibutylphthalate, benzene	butenes		173, 174
rdUp supported on suica get of At2U3 PdCl ₂ (Me ₂ SO) ₂ /K ⁺ [(Me ₂ SO)PdCl ₃]	J. 06	butenes		177-179
supported on since general $[(\eta_{-} arene)PdAl_{m}Cl_{n}]_{2}$ (arene = $C_{6}H_{6}$, toluene; $m=1; n=4$)	25 °C	butenes	85–95% dimerization has taken place	175
$AgCl_{T}(C_2H_5)_2AlCl/(C_2H_5)AlCl_2$		Silver butenes		33, 34
$L_2\mathbf{HfH}_3 (\mathbf{L} = (\mathbf{CH}_3)_2\mathbf{PCH}_2\mathbf{CH}_2\mathbf{P}(\mathbf{CH}_3)_2)$		Hafnium butenes		68
L_2TaH_5 (L = dmpe) $CpTaCl_2(C_4H_8)$ (Cp = cyclopentadienyl anion;	40 psig	Tantalum butenes 1-butenes ($\sim 3\%$)		89 347, 348
C₄H ₈ = butadiene) (CH₂CMe₃)₃Ta(CHCMe₃)₃−PMe₃	pentane, 25 °C	1-butene		9, 94, 95, 97, 98
HN CH3 - IC24532AICI	benzene, 40 °C	Tungsten butene (98%)	conversn 84 000 mol/mol of tungsten/h	349
\ #\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				

TABLE II (Continued)

rof	103	161	180
comments			
products	1-butene (92%)	Iridium 2-butene (95–99%), 1-butene (1–5%)	Platinum butenes
reactn condtn	chlorobenzene, 1 h, 40 °C, 1-butene (92%) 27 atm	Ir ethyl alcohol	Ple
cat.	WCl ₆ -(C ₂ H ₅) ₂ AlCl-2,6-(CH ₃) ₂ - C ₆ H ₃ NH ₂	IrCl ₃	$Pt(PPh_3)_4$ supported on polymer- BF_3 - OEt_2

TABLE III. Representative Kinetic Data for the Dimerization of Ethylene

cat. system	reactn conditions	rate data, (T, °C)	remarks	ref
$Al(C_2H_5)_3$	416.7 torr	$1.038 \times 10^{-2} \text{ mol}^{-1}.\text{L}\cdot\text{s}^{-1} (167)$	rate constants at	35
$Al(C_2H_3)_3$ $Ti(n \cdot C_4H_9O)_4 - AlR_3$ (R = CH ₃ , C_2H_5 , $n \cdot C_4H_9$)	n-decane, 9-120 psi diethyl or dibutyl ether	0.10 mol ⁻¹ ·L·min ⁻¹ (100) 20 g/(L·min) (60)	pressures given $E_{\rm a} = 15 \text{ kcal/mol}$	52 67
Ti(n-C ₄ H ₃ O) ₄ -Al(C ₂ H ₅) ₃ Ti(i-C ₃ H ₂ O) ₄ -Al(C ₂ H ₅) ₃ Ti(acac) ₂ Cl ₂ -Al(C ₂ H ₅) ₃ Ti(acac) ₂ (OC ₂ H ₅) ₂ -Al(C ₂ H ₅) ₃ Ti(OC ₂ H ₂ CH ₃) ₂ -Al(C ₂ H ₅) ₃	pentane-dioxan, 1.5 MP _a heptane, 7.12 atm, $A/M = 5.6$ heptane, 7.12 atm, $A/M = 4.9$ heptane, 7.12 atm, $A/M = 6.1$ heptane, 7.12 atm, $A/M = 6.1$	4.17 g/(L-min) (50) 1.3 g/(L-min) (90) 0.18 g/(L-min) (90) 0.08 g/(L-min) (90) 1.3 g/(L-min) (90)		197 47 47
Ti(OC ₆ H ₆ J ₄ -Al(C ₂ H ₆); Ti(OC ₆ H ₄ CH ₃ J ₄ -Al(C ₂ H ₆); Ti(OC ₆ H ₄ Am) ₄ -Al(C ₂ H ₆); Ti(OC ₄ H ₉)-Al-i-Bu ₃ Ti(OC ₄ H ₉)-Al-i-Bu ₃	heptane, 15 kg/(cm².g), Al/Ti = 3.0 heptane, 15 kg/(cm².g), Al/Ti = 3.0 heptane, 15 kg/(cm².g), P/Ti = 4.0 decane, 1 bar, Al/Ti = 4.5 heptane, 4 atm, Al/Ti = 10	1.2 g/ (L7min) (20) 0.5 g/min (40) 0.5 g/min (40) 1.31 g/min (60) 1.125 g/(L-min) (20) 0.243 g/min (20)	rates in other	58 58 64 65
Ti(OC ₄ H ₉),-Al(C ₂ H ₅); Ti(OC ₄ H ₉),-Al(CH ₃); Ti(OC ₄ H ₉),-Al(c·P ₁); Ti(O-n-C ₄ H ₉),-Al(C ₂ H ₅);	heptane, 10 atm, Al-Ti = 7.5 heptane, 10 atm, Al/Ti = 7.5 heptane, 10 atm, Al/Ti = 7.5 toluene, 10 atm, Al/Ti = 10	0.25 g/min (20) 0.18 g/min (20) 0.09 g/min (20) 0.77 g/min (20)	solvents given rates for other	62 62 62 62
Ti(OC ₄ H ₉),4-Al(C ₂ H ₅) ₃ Ti(OC ₂ H ₅),4-Al(C ₂ H ₅) ₃ Ti(OC ₄ H ₆),4-Al(C ₂ H ₅) ₃ - m-phenylenediamine Ti(OC ₄ H ₉),4-Al(i-Bu) ₂ H WCl ₆ -2,6-dimethylaniline- (C ₂ H ₅),Al(C)	heptane, 460 torr, Al/Ti = 10 n-decane, 2.7 atm, 2 h n-heptane, 3 atm, 280 min diethyl ether, 9.3 atm, 109 min benzene, 1 h, 27 atm	3.5 g/(L-min) (22) 1.83 g/(L-min) (20) 1.57 g/(L-min) (20) 6.5 g/(L-min) (60) 0.85 mol/(L-min) (40)	Troopers Broad	63 222 222 222 349
Co(C ₂ H ₄)(PPh ₉) ₃ ₂ Ni(C ₆ H ₅)Br(PPh ₉) ₂ -BF ₃ -OEt ₂ V(O-C ₃ H ₇) ₄ -Al(C ₂ H ₅) ₃ CrC ₂ (NO) ₂ (Ph ₃ PO) ₂ -(C ₂ H ₅)AlCl ₂ CrCl ₂ (H ₂ Eppy ₂ -(C ₂ H ₅)AlCl ₂ CrCl ₂ (NO) ₂ (4-Eppy ₂ -(C ₂ H ₅)AlCl ₂ CrCl ₃ (NO) ₂ (4-Eppy ₃ -(C ₂ H ₅)AlCl ₂ CrCl ₃ (Bu ₃ P) ₂ -(C ₂ H ₅)AlCl ₂ CrCl ₃ (Bu ₃ P) ₂ -(C ₂ H ₅)AlCl ₂ RhCl ₃ ·3H ₂ O	benzene, 1 atm CH ₂ Cl ₂ , 1 atm Al/M = 3.8, 7.12 atm chlorobenzene, 500 psig, 1 h chlorobenzene, 500 psig, 1 h chlorobenzene, 500 psig, 1 h chlorobenzene, 500 psig 1 h chlorobenzene, 750 psig 1 h, Al/Cr = 5 EtOH-HCl, 4 atm EtOH-HCl, 4 atm	6.59 mol ⁻¹ -L·min ⁻¹ (10) 0.05 g/min (0) 0.17 g/(L·min) (90) 7.6 g/(L·min) (50) 7.5 g/(L·min) (50) 7.9 g/(L·min) (50) 6.8 g/(L·min) (50) 7.5 g/(L·min) (50) 8.2 x (10 ⁻⁴ g/min (33) 1.01 x 10 ⁻⁴ g/min (20)	$E_{\mathrm{a}} = 13.6 \text{ kcal/mol}$ $E_{\mathrm{n}} = 14.7 \text{ kcal/mol}$	112 289 47 99 99 99 99 33

SCHEME XXIII. Formation of ht and tt Propylene Dimers from Tantalacyclopentane Complexes

lective catalytic dimerization of propylene to a mixture of tail to tail (tt) and head to tail (ht) dimers⁹⁴ (eq 17).

The investigators of the above work have also observed that $(\eta^5\text{-}\mathrm{C}_5\mathrm{H}_5)\mathrm{Cl}_2\mathrm{TaCH}_2\mathrm{CHMeCHMeCH}_2$ is the crucial intermediate in the catalytic dimerization of propylene to largely 2,3-dimethyl-1-butene. Unfortunately this catalyst system becomes inactive after ~ 20 turnovers, possibly because $\mathrm{Ta}(\eta^5\text{-}\mathrm{C}_5\mathrm{H}_5)\mathrm{Cl}_2(\mathrm{C}_3\mathrm{H}_6)$ which must be formed as intermediate is unstable at 25 °C. ³⁷⁸

Deuterium labeling studies show that each tantalacyclopentane ring contracts to the tt or ht dimer. An alkenyl hydride complex is an intermediate in each pathway (Scheme XXIII). It forms reversibly from the tantalacyclopentane complex. The rate of the ring contraction step may be kinetically important, and decomposition of the tantalacyclopentane complex is fast relative to the rate at which it forms its alkenyl hydride precursor. In the second pathway the β -hydrogen abstraction can lead to 33 and subsequently to an α, α, α' -trisubstituted metallacycle (eq 18).

This is much more sterically crowded than the α,β -disubstituted metallacycle given in the original pathway. This choice is applicable only to α,β' -disubstituted metallacyclopentane rings since the β,β -disubstituted metallacyclopentane must collapse to the much more crowded α,α,β -trimethyltantalacyclopentane complex.

F. Group 6 (VIB) Elements

1. Chromium

 ${\rm CrCl_3(py)_3,\,CrCl_3(4-Etpy)_3,\,and\,[CrCl_3(PBu_3)_2]_2\,complexes}$ have been used as catalysts^{94,101} for the dimerization of propylene. In addition to dimers, trimers and tetramers are formed. The C₆ fraction is composed mainly of 2-methylpentene (69%) and n-hexenes (31%). EtAlCl₂ is used as the cocatalyst in these systems.

2. Tungsten

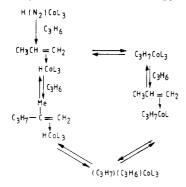
Treatment of WCl₆ with aniline (ligand) and $\rm Et_3Al_2Cl_3$ gives $\rm HWCl_3\cdot H_2NPh$ which on reaction with propylene is converted into a series of reaction intermediates. The order in which the reagents are combined is important to the reaction. As the Al/W ratio decreases, the proportion of dimerization also decreases. WCl₆ or WBr₅ heated at 132 °C with aniline in conjugation with EtAlCl₂ is also used as a catalyst for the dimerization of propylene at 60 °C. ²⁰⁷ Conversion of propylene is 39%, and selectivity for C₆ olefins is 98% with this method.

Additives like phenols,³⁸¹ carboxylic acid esters,³⁸² and diketones³⁸³ with the WCl₃-PhNH₂-Et₃Al₂Cl₃ system influence the conversion and selectivity of dimerization of propylene considerably. 2,3-Dimethyl-1-butene and 2-methyl-1-pentene are the major products in all these reactions. A WCl₆/additive mole ratio of 1:1 is employed. The WCl₆-OHC₆H₄COOCH₃³⁸¹ system gives 94% conversion and 99% selectivity to hexenes. On the other hand, the WCl₆-C₆H₅CH₂OH system produces 77% conversion and 90% selectivity to dimers.³⁸²

G. Group 7 (VIIB) Elements

There is a patent report³⁸⁴ on a manganese-based metal complex as a catalyst for the dimerization of propylene. When AlCl₃ is added to MnCl₂, it forms a 1:1 complex initially. Here AlCl₃ acts as a Lewis acid. If AlPr₃ and propylene are added to this, 2- and 4-methyl-2-pentenes and 2-hexenes are formed. Activity of the catalyst increases with an increase in complex concentration.

H. Group 8-10 (VIII) Elements


1. Iron

The FeCl₃-AlCl₃ (1:1) system with AlPr₃ cocatalyst is a good catalyst for propylene dimerization. It has higher activity than the MnCl₂-AlCl₃-AlPr₃ system. ³⁸⁴ The Fe(acac)₂-(i-Bu)₂AlCl system is also known to catalyze the dimerization of propylene. ³⁸⁵ The dimerization of propylene to 2-methyl-2-pentene in heptane, toluene, or chloroform solvents in the presence of the tricomponent system Fe(acac)_n (where n=2,3)-Et₂AlCl-1,5-cyclooctadiene has also been patented. ³⁸⁶

2. Cobalt

The two-component cobalt catalyst such as CoCl₂–Et₂AlCl with methylene chloride has high activity for propylene dimerization. The following types of catalyst

SCHEME XXIV. $H(N_2)CoL_3$ (Where L = Tertiary Phosphine) Catalyzed Dimerization of Propylene

systems have also been used: 387 CoX₂-AlR₃; CoX₂-AlX₃ and related systems; CoX₂-AlX₃-AlR₃ (R = alkyl; X = halogen). Many of these systems have very high activities. The transition-metal salts give >95% selectivity to dimerization in some cases. The dimer products are similar in all cases and consist of 30% hexenes and 70% methylpentenes. Selectivity to n-hexenes is increased to 50% at 150 °C. It is presumed that cationic catalysis is involved.

The CoCl₂-AlCl₃ (1:1) complex system with AlPr₃ is effective for homogeneous dimerization of propylene. It has higher activity compared to the MnCl₂-AlCl₃-AlPr₃ and FeCl₃-AlCl₃-AlPr₃ systems.³⁸⁴

 $HCo(N_2)(PPh_3)_3$ has been used to dimerize propylene. ¹⁰⁹ 2-Methyl-1-pentene is the main product. The addition of 3 mol of tri-*n*-butylphosphine/mol of cobalt complex considerably reduced the dimerization rate. A mechanism as shown in Scheme XXIV is proposed.

The kinetics of homogeneous propylene dimerization with $HCo(N_2)(PPh_3)_3^{388}$ or $Co(N_2)(PPh_3)_3^{389}$ as catalysts under mild conditions can be described by eq 19, where

Rate =
$$\frac{k_3 K_1 K_2 [Co][C_3H_6]}{[PPh_3] + K_1 + K_1 K_2 [C_3H_6]}$$
(19)

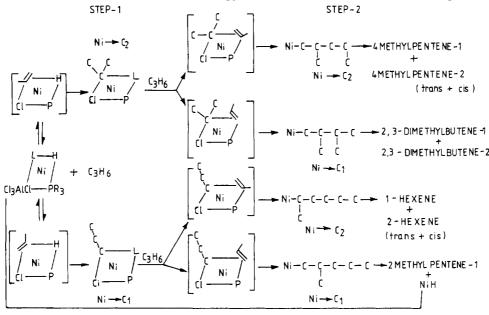
 K_3 , K_1 , and K_2 are all constants. The following activation parameters are reported for the dimerization reaction: $\Delta E_a = 22.9 \text{ kcal·mol}^{-1}$, $\Delta H^* = 22.3 \text{ kcal·mol}^{-1}$, and $\Delta S^* = 13 \text{ cal·mol}^{-1} \cdot \text{K}^{-1}$. The Co(acac)₂–(*i*-Bu)₂ AlCl system catalyzes the dimerization of propylene to give methyl-substituted pentenes.³⁸⁵

3. Nickel

The predominant literature ^{132,390–394} on the propylene dimerization is based on the nature of the activity of complex organometallic catalysts based on nickel compounds and the effects of ligand attached to the nickel on the selectivity of the process.

The IFP Dimersol process (Dimersol G) for the single-stage dimerization of propylene yields hexenes present in high octane gasoline. The process takes place under rigorously controlled conditions at reduced pressures and ambient temperature in the presence of catalytic amounts of a nickel and aluminum alkyl complex which is immediately destroyed in an NH₃-H₂O system on completion of the dimerization.

Catalysts based on $(\pi$ -allyl)nickel halide are reported ^{143,244} to be used for the dimerization of propylene on


a laboratory scale as well as pilot plant scale at the Max Planck Institute, West Germany. $(\pi\text{-Allyl})$ nickel halides with various cocatalysts like $\mathrm{AlCl_3}$, 1,30,107,149,246 TiCl₄, $\mathrm{MoCl_5}$, $\mathrm{VOCl_4}$, and $\mathrm{WCl_3}^{30,107,149,246}$ are active for the formation of n-hexenes, 2-methylpentenes, and 2,3-dimethylbutenes from propylene. When these catalysts are modified by adding tertiary phosphines, the dimerization of propylene can be diverted depending on the phosphines used 1,143 to give either 2-methylpentenes or 2,3-dimethylbutenes. These products are precursors of isoprene and 2,3-dimethylbutadiene, respectively. The mixture of them can be used as motor fuel constituents. The Lurgi-Ruhrgas Co. has set up an industrial plant for the dimerization of propylene having a capacity of about $100\,000$ ton/year. 244

It has been suggested that the activity of complex Ziegler catalysts toward the dimerization of alkenes¹⁰⁷ arises from the formation of complex hydrides, for example, HNiCl, coordinated to the alkylaluminum halide. The study of the influence of phosphines on propylene dimerization has been studied extensively. $^{149,397-400}$ In the series of PPh₃ to P(i-Pr)₃ the yield of n-hexenes decreases gradually from 21.6 to 1.8% according to the order PPh₃ > Ph₂P(CH₂)₃PPh₂ > $Ph_2PCH_2Ph > Ph_2P(i-Pr) > Ph_2PCH_2PPh_2 > PMe_3 >$ $PEt_3 > P(n-Bu)_3 > P(CH_2Ph)_3 > P(NEt_2)_3 > Cy_2PPCy_2$ $> PCY_3 > P(i-Pr^i)_3$. However, the yield of 2,3-dimethylbutenes increases up to 67.9% in the above series. Still higher yields of 2,3-dimethylbutenes are achieved by using phosphines with tert-butyl groups. However, with the introduction of two tert-butyl groups in combination with one isopropyl group in the phosphine the yield of 2,3-dimethylbutenes drops to 29.1%. There are two effects operating, namely, inductive effect of the group "R" attached to the phosphorous and the steric hindrance of the bulky tert-butyl groups. Better insight into the nature of the effect of phosphines on the catalytic reaction can be obtained when the mechanism and composition of dimers are taken into account.

The possible routes leading to the formation of different dimers are shown in Scheme XXV. A squareplanar nickel hydride complex401 is suggested as the catalytic species. In the first step the nickel hydride catalyst adds across the double bond of propylene to give two intermediates, namely, a propyl nickel and an isopropyl nickel complex. Both of these intermediates can react further with propylene by insertion of the double bond into the nickel-carbon bond resulting in formation of four more intermediates. β -Elimination of nickel hydride from these intermediates produces the possible products of propylene dimerization, namely, 4-methyl-1-pentene, cis- and trans-4-methyl-2-pentene, 2,3-dimethyl-1-butene, n-hexene, 2-hexenes, and 2methyl-1-pentene. Terminal unbranched olefins are rapidly isomerized under the influence of catalyst by a process of repeated nickel hydride addition and elimination to the internal olefins. Therefore under ordinary reaction conditions the yield of 4-methyl-1pentene is low.

The influence of phosphines on the direction of addition of nickel hydride or nickel alkyl to propylene is debatable. If it is assumed that the isopropyl nickel complex and the propyl nickel complex have the same reactivity toward propylene, the direction of addition

SCHEME XXV. Possible Routes Leading to Different Propylene Dimers in Presence of Nickel Complex

in the first reaction step (%) in the scheme is given by the ratio

$$\frac{\text{Ni} \rightarrow \text{C}_2}{\text{Ni} \rightarrow \text{C}_1} = \% \text{ (4-methyl-1-pentene + } \\ \text{4-methyl-2-pentene + 2,3-dimethyl-1-butene + } \\ \text{2,3-dimethyl-2-butene)}/\{\% \text{ (hexenes + } \\ \text{2-methyl-1-pentene)}\}$$

Similarly the average direction of addition in the second step is given by the ratio

$$\frac{\text{Ni} \rightarrow \text{C}_2}{\text{Ni} \rightarrow \text{C}_1} = \% \text{ (4-methyl-1-pentene + 4-methyl-2-pentene + hexenes)/}$$

$$\{\% \text{ (2,3-dimethyl-1-butene + 2,3-dimethyl-2-butene + 2-methyl-1-pentene)}\}$$

To obtain these ratios for different phosphines, it is necessary to avoid the isomerization of 2-methyl-1-pentene and 4-methyl-2-pentene. With strongly basic phosphines, the rate of isomerization as well as dimerization decreases in the order $PMe_3 > PPh_3 > PEt_3 > PCy_3 > (i-Pr)P(t-Bu)_2$. The isomerization can be suppressed at low conversion.

The amount of higher oligomers formed during the dimerization of propylene is also influenced by the nature of the phosphines. Their yield increases with the basicity of phosphines. Also the propylene dimers obtained with basic phosphines are isomerized only to a slight extent.

The dimerization of propylene on a $(\pi\text{-}\mathrm{C}_3\mathrm{H}_5)\mathrm{NiBr}$ - $(\mathrm{PCy}_3)^{402}$ in the presence of EtAlCl_2 proceeds with a turnover number of 60 at -75 °C and 230 at -55 °C. Extrapolated to 25 °C this gives a turnover number of 60 000 which is comparable to the activity of catalase. At higher conversions the catalyst has diminished activity. The product formed include 10–15% higher olefins, 18% 4-methyl-1-pentene, 1–3% cis-4-methyl-2-pentene, 76% 2,3-dimethyl-1-butene, and 4% 2-methyl-1-pentene as well as traces of other isomers.

With the $[\pi\text{-crotyl})\text{NiCl}]_2$ -TiCl₄ catalyst system the activation energy for the dimerization of propylene is

observed to be 15.2 kcal/mol. The kinetics and product distribution for this and several other (π -allyl)nickel catalysts have been determined with PPh₃ as a proton acceptor: the yield of 2-methyl-2-pentene varies from $\sim 13\%$ to 56.5%.

There are reports⁴⁰⁴⁻⁴⁰⁶ on the dimerization of propylene catalyzed by heterogenized (π -allyl)nickel halides. Polymer-anchored π -allylic nickel complexes similar to nonsupported complexes are found to be effective catalysts for propylene dimerization after activation with a Lewis acid such as EtAlCl₂ (molar ratio of Al/Ni = 15.5). Using a cross-linked resin as a support the dimerization can be performed continuously since the catalytic centers remain active for a long time without any further addition of aluminum cocatalyst. The release of metals during this reaction is low. The reactions are carried out either in bulk propylene or in chlorobenzene solution. The conversion reaches 95% at room temperature. The product has the composition of 2% dimethylbutenes, 67% methylpentenes, and 31% hexenes. Hexene content obtained with polymer-anchored nickel catalysts is higher than those observed with the $(\pi$ -allyl)nickel triphenylphosphine complex with EtAlCl₂. The drawback of the polymer-anchored catalyst is that it loses 40% of its initial metal content after the reaction.

Ni(acac)₂–Et₂Al(OEt)⁴⁰⁷ at 40 °C dimerizes propylene selectively to linear olefins, preferred solvents being ethers like diglyme. The optimum Al/Ni ratio is found to vary with different aluminum alkyls like AlEt₃, Et₂Al(OEt), and EtAl(OEt)₂. With AlMe₃ and Me₂Al(OEt) the optimum activity is observed at Al/Ni = 2:1. Maximum productivity is achieved between 20 and 40 °C. Investigation of the reaction with various β -diketones reveals that the nickel complex of dibenzoylmethane shows an improvement over nickel acetylacetonate on a molar basis. For this complex the optimum Al/Ni ratio is 1:1 for the AlMe₃ cocatalyst. Linear dimerization activity is also observed with alkyl compounds of lithium, boron, and magnesium. Of these the highest activity is observed by using BEt₃.

Ni(acac)₂(i-Bu)₂ AlCl is reported to catalyze the dimerization of propylene to yield a mixture of dimers.

The dimer yield per unit weight of Ni(acac)₂ is improved by a factor of 5–8 when the homogeneous catalyst is replaced by Ni(acac)₂ on a solid carrier like Al₂O₃, SiO₂, or K₂CO₃. The catalytic activity of Ni(acac)₂ with Et₂AlCl, Et₃Al₂Cl₃, EtAlBr₂, and EtAlCl₂ are also observed. 385

Thermodynamic constants have been calculated for 12 dimerization reactions of propylene at 5, 25, 127, and 227 °C, and the equilibrium composition⁴⁰⁸ of the dimerization products at these temperatures has been determined. The influence of various phosphine additives in the $Ni(acac)_2-(i-Bu)_2AlCl$ catalyst system on the composition of dimerization products has been investigated and a dimerization scheme presented.

The same reaction is studied⁴⁰⁹ in the presence of gel like catalytic systems (GCS) containing Ni(acac)₂ and RAlX₂. The activity of GCS in heptane, 2,2,4-trimethylpentane, and propylene dimers remains constant for hundreds of hours.

The activity of nickel salts supported on Al_2O_3 or SiO_2 in combination with the $(i\text{-Bu})_2AlCl$ cocatalyst toward propylene dimerization decreases in the order⁴¹⁰ Ni- $(acac)_2 > NiCl_2 > NiBr_2 > Ni(NO_3)_2 > NiSO_4$.

In the dimerization of propylene with a 1:45:16 Ni/Al/P mole ratio for the Ni(acac)₂-Et₃Al₂Cl₃-PPh₃ system raising the reaction temperature from -50 to 40 °C decreases the yield of 2-methylpentenes.⁴¹¹ The yield of 2,3-dimethylbutenes increases, and the yield of hexenes remains constant. An increase in the P/Ni ratio from 0 to 8 at Al/Ni ratio of 45 is associated with decrease of hexenes and increase of 2,3-dimethylbutenes.

The effect of reaction parameters like catalyst concentration, temperature, and pressure on the selectivity of the dimerization of propylene in the presence of the catalytic system Ni(acac)₂–(i-Bu)₂AlCl–L (L = PPh₃, PCy₃, or (Me₃C)₂PBr) has been studied. The isomerizing activity of phosphorous ligands is PPh₃ > catalyst without L > PCy₃ > (Me₃C)₂PBr. An increase in the pressure decreases the isomerization and increases the dimer yield. Optimum dimer yield is obtained at temperature from –10 to 20 °C. At low catalyst concentration in the presence of (Me₃C)₂PBr 23% of thermodynamically unstable 4-methyl-1-pentene is obtained. Compounds like P(OR)₃ are recommended as modifiers for the above system in place of PPh₃. 413

The nature of the phosphorus ligand in the Ni-(acac)₂-Et₃Al₂Cl₃-PR₃ catalyst^{142,401} on the dimerization of propylene in toluene is studied. The electronic effect of substituents in triarylphosphine P(PhX)₃ (X = p-Cl, p-H, p-Me, p-OMe, o-Me, etc.) on dimer distribution is measured. The catalytic activity decreases in the series p-Cl > p-H > o-Me $\approx p$ -Me > p-AC > p-Et > p-Bu. Both the basicity and molecular bulkiness of the phosphines favor formation of 2,3-dimethylbutenes rather than hexenes or 2-methylpentenes.

Propylene dimerization in toluene over a 1:8:3 Ni-(acac)₂-PPh₃-Et₃Al₂Cl₃ catalyst^{393,414} is second order in propylene and second order in catalyst. The thermodynamic parameters have been calculated for the catalyzed and uncatalyzed gas-phase reactions. The above catalyst system shows higher activity⁴¹⁵ at 10 °C than at 26 °C in the isomerization of 2-methyl-1-pentene. This suggests that the catalytic species is thermally unstable even at 26 °C. Very low temperatures of -50 to -20 °C have been employed to prevent deactivation

of the catalyst. The kinetics of the dimerization is carried out in a static system containing propylene of comparatively high concentrations (propylene/Ni molar ratio = 240-2400). The rate law is given by

$$\frac{\mathrm{d}[\mathrm{C}_6\mathrm{H}_{12}]}{\mathrm{d}t} = k[\mathrm{Ni}][\mathrm{C}_3\mathrm{H}_6]$$

$$k = 10^{10.1}e^{(-13000/RT)}$$
mol⁻¹·1·s⁻¹

The rate law is different from that given by Hojabri, 393,414 based on data at high temperatures. This is because of the measurement of the rate by an integral method without taking into account the deactivation of the catalyst. Activation parameters have been evaluated as $E_a=13.0~\rm kcal/mol$, $k=7.98\times10^{-3}~\rm mol^{-1}$, $L\cdot s^{-1}$ at $-40~\rm ^{\circ}C$, $\Delta H^{\dagger}=12.5~\rm kcal/mol$ at $-40~\rm ^{\circ}C$ (8.95), $\Delta S^{\dagger}=-13.8~\rm cal\cdot mol^{-1}\cdot k^{-1}$ at $-40~\rm ^{\circ}C$ (0). The values in the parentheses are obtained by Hojabari at 30 $\rm ^{\circ}C$. Insertion of propylene into the propyl nickel complex is taken to be the rate-determining step of the mechanism proposed.

The structure and yield of the propylene dimerization products have been studied as a function of the catalyst composition and solvent. The highest yield is obtained in toluene with a relative molar composition of Ni(acac)₂-AlEt₃-PPh₃-BF₃·OEt₂ as 2:1:4:35. It corresponds to the B/Ni molar ratio of 15. At a B/Ni molar ratio of <5 the system is catalytically inactive. When BF₃·OEt₂ is preconditioned in anhydrous toluene for a few days, then the optimal ratio decreases. At the optimum catalyst composition the yield is the highest in toluene, then in benzene, and much lower in chlorobenzene, yet the relative distribution of products in toluene and chlorobenzene is closer than that in benzene. The Brønsted acid activates the catalyst containing nickel(0).

Complexes of Ni(acac)₂(COD) and Ni(acac)₂(C₄H₈) supported on polystyrene containing PEt₂, P(*i*-Bu)₂, P(OEt)₂, P(NEt₂)₂, and PCl₂. AlCl₃ along with Et₂AlCl, EtAlCl₂, or (*i*-Bu)₂AlCl activators catalyze the dimerization of propylene giving 1300–1700 g of dimers/h/g of nickel. ⁴¹⁷ The catalysts are stable for >1000 h in alkane solvent. The precise dimer composition depends on the catalyst components, solvent, and temperature.

Nickel oleate with $Al_2R_{6-x}Cl_x$ (x=2,3, or 4) brings about the dimerization of propylene. ^{107,145,146} Ni(O₂C C₁₅H₃₁)₂-Bu₂AlCl-L (L = dibenzo-18-crown-6, polyethylene glycol 2000, X(CH₂CH₂O)₂CH₂CH₂X where X = piperidino, PhS, or PhO) containing a 50:1 ratio of Al/Ni catalyzes the reaction at 0-10 °C and 1 atm. Using crown ethers and polyethylene glycol ligands with the complex, \leq 90% selectivity for methylpentenes can be achieved. ⁴¹⁸

Ni(O₂CR)₂ (R is undefined)–(i-Bu)₂ AlCl-piperidine or -morpholine systems are also known to dimerize propylene. Conversion of propylene is the highest (80–85%) with piperidine as the additive.⁴¹⁹

Study of the dimerization of propylene in the presence of phosphine complexes of nickel(0) is available. ^{420,421} The Ni(PPh₃)₄-AlBr₃ or -AlCl₃, Ni(PPh₃)₄-BF₃·OEt₂, ^{422,423} and Ni(PPh₃)₄-Et₂AlCl or -Et₃Al₂Cl₃ ⁴²⁴ systems are a few of them. Addition of HF to a Ni-(PPh₃)₄-BF₃ catalyst system for propylene dimerization up to a Ni/HF ratio of 1:1 significantly increases the rate. Analogous results ⁴²⁵ have been obtained upon the

addition of HF and H₂SO₄ into the Ni(PPh₃)₄-BF₃·OEt₂ catalytic system. The composition of the propylene dimers is hardly affected by the introduction of Bronsted acid into the catalytic system. The order of addition of these acids has a significant effect on the yield of hexenes. If HF is added to the Ni(PPh₃)₄ solution before the Lewis acid, the yield of hexenes is doubled. There is also a report on the dimerization of propylene catalyzed by Ni(PPh₃)₄ in conjunction with CF₃CO₂H.^{426,427}

A polystyrylnickel complex prepared by the oxidative addition 345,428 of brominated polystyrene to Ni(PPh₃)₄ and activated with BF3 OEt2 and a catalytic amount of water acts as an efficient catalyst for the dimerization of propylene at room temperature and atmospheric pressure. Solvents like n-hexane, toluene, benzene, methylene chloride, and chlorobenzene increase the rate of reaction. One role of the solvent is to swell the matrix polymer to allow access of the substrate olefin to the interior of the polymer gel. Some dipole-dipole interaction between the nickel site, the olefin, and the solvent molecule may be prevailing so that competitive coordination of the olefin and the solvent to the nickel site may be possible. The effect of temperature shows that the rate of the dimerization reaction decreases with an increase in temperature while selective formation of methylpentenes increases up to 90% at 40 °C. 2-Methyl-2-pentene is the major C₆ olefinic product.

 $Ni(PPh_3)_2(C_2H_4)$ in conjunction with CF_3CO_2H or $H_2SO_4^{426}$ catalyzes the dimerization of propylene. Ni- $(i\text{-}PPr_3)(C_2H_4)_2$ and $Ni(i\text{-}PPr_3)_2(C_2H_4)$ with $BF_3\text{-}OEt_2^{122}$ also convert propylene into dimers. Treating the same complexes with AlBr₃ or HCl gives complexes which dimerize propylene. However, the bis(ethylene) complex with $TiCl_4$ or WCl_6 gives rise to trans C_6 products from propylene. 123 $Ni(i\text{-}PPr_3)(C_3H_6)_2$ reacts with BF_3 at low temperatures like -78 °C. During this reaction coordinated propylene is dimerized selectively to 2,3-dimethyl-1-butene⁴²⁹ (eq 20).

This observation leads to the conclusion that propylene ligands in the starting complex are coordinated rigidly in a "methyl to methyl" orientation and are not capable of free rotation relative to the coordination axis at -78 °C. The final adducts are active catalysts of olefin dimerizations.

Addition of AlCl₃ in chlorobenzene solution to Ni- $(CO)_2(PPh_3)_2$ results in removal of two triphenylphosphine ligands and produces an active nickel catalyst for propylene dimerization. With BF₃·OEt₂ also the same carbonyl complex can convert propylene into dimers. The activity of various cocatalysts decreases in the order NbF₅ > SbF₅ > TaF₅ > BF₃·OEt₂ > AlCl₃ > InBr₃. The surprising fact is that even in the presence of a hundredfold excess of Lewis acid no free acid remains in the medium possibly because the Friedel–Crafts behavior of these compounds may be suppressed by trace amounts of nickel.

Ni[P(OPh)₃]₄ with AlCl₃ or AlBr₃,⁴³¹ Ni[P-(OEt)₃]₄,^{426,432,433} and Ni(CO)₂[P(OPh)₃]₂,⁴³⁰ are also active for the conversion of propylene to C₆ and substituted C₅ olefins. Ni(C₂H₄)[P(OC₆H₄R)₃]₂ (R = o-Me, o-OMe) are the most active.

Studies of the dimerization of propylene in the presence of catalytic systems based on phosphine complexes of nickel(I) are reported. Formation of active complexes containing alkylaluminum compounds like AlEt₃, Et₂AlCl, and Et₃Al₂Cl₃ with NiCl(PPh₃)₂ have been observed for propylene dimerization. Al(PPh₃)₂Cl or NiCl(PPh₃)₃ and the BF₃·OEt₂ system is also efficient for the conversion of propylene to dimers. Addition of Brønsted acids increase the catalytic activity.

Nickel(II) phosphine complexes like NiCl₂(PPh₃)₂ and NiCl₂(PBu₃)₂ with R_{6-x}Al₂Cl_x (x=2,3, or 4) form active complexes for the dimerization of propylene. The degree of isomerization of propylene dimers⁴³⁴ to 2,3-dimethyl-1-butene and -2-butene during propylene dimerization in the presence of NiCl₂(PCy₃)₂–(i-Bu)₂AlCl increases in the order of solvents C₆H₅CH₃ < m-Br₂C₆H₄ < C₆H₅Br < o-Cl₂C₆H₄. Halogenated hydrocarbons participate in the regeneration of the catalytic complexes and also allow secondary cationic oligomerization of propylene.

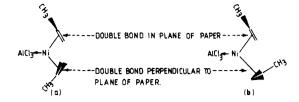
The 1:2 HNiCl and $P(i\text{-Pr})_3$ complex with $\text{Et}_3\text{Al}_2\text{Cl}_3^{124}$ is reported to catalyze the dimerization of propylene. $\text{Et}_3\text{Al}_2\text{Cl}_3$ apart from participating in the formation of active catalytic species maintain an adequate concentration of HNiCl. Apart from the catalytic conversion of propylene into linear dimers tris(triphenylphosphine)tetramethylenenickel(II) can produce cyclo dimers by oxidation of the complex prepared from the olefin. ^{145,150}

The dimerization of propylene by means of the $NiCl_2L-EtAlCl_2-0.5PBu_3$ (L = tetramethylcyclobutadiene) complex^{150,301,435} is faster in chlorobenzene than in benzene. The rate of the reaction also depends upon the nature of Lewis acid. Moreover the ratio of the rate of isomerization to dimerization increases with the dielectric constant of solvents. So when unisomerized dimers are wanted, the dimerization is better conducted without a solvent (eq 21).

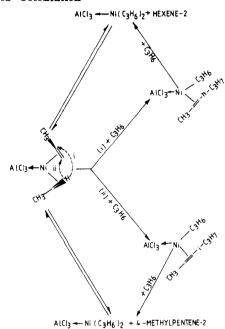
A selective dimerization of propylene to 2,3-dimethylbutene⁴³⁶ catalyzed by $R_4P[(i\text{-}Pr_3P)\mathrm{NiCl_3}]$ with $\mathrm{Et_3Al_2Cl_3}$ in a toluene medium is reported. 2- and 4-methyl-1-pentene are the other products. The increasing temperature (-20 to +20 °C) leads to the formation of $\mathrm{C_9}$ olefins at the expense of 4-methyl-1-pentene. This suggests a secondary codimerization of the product olefin with propylene. Most of the olefins are the thermodynamically less favored α -olefins indicating the absence of double-bond isomerization under these conditions. The Al/Ni ratio, although having a pronounced effect on reaction rate and yield at low values, has no influence on the catalyst selectivity.

Different cocatalysts such as $R_2Al_2Cl_4$ or $R_4Al_2Cl_2$ produce a comparable catalyst with a somewhat decreased activity. The high rates of reaction in nonpolar solvents make the presence of ionic intermediates unlikely. Use of other solvents such as benzene or chlorobenzene do not produce any major change in the product composition. The active species 34 and 35 are formed by the reaction of the monomer with a coordinated nickel hydride.

The nickel-butadiene complex deposited on PCl_3 -treated Al_2O_3 and activated with $AlEt_3^{437}$ shows good catalytic activity for the dimerization of propylene giving predominantly 2-methyl-2-pentene in halogenated hydrocarbons and 4-methyl-2-pentene in pentane. The Ni/Al ratio of 1:200 is optimum for the above conversions.


Diethyl(bipyridyl)nickel(II) activated as a catalyst⁴³⁸ for the propylene dimerization by the addition of a Lewis acid such as EtAlCl₂ or Et₂AlCl with an Al/Ni ratio of 2–4 shows high catalytic activity in chlorinated aromatic solvents only. However, aryl(bipyridyl)nickel halide complexes activated by the addition of EtAlCl₂ do not require such chlorinated aromatic solvents in order to exhibit high catalytic activity. o-Chlorodiphenyl(bipyridyl)nickel chloride shows highest catalytic activity among the various aryl(bipyridyl)nickel halide complexes tried. The coordination of 2,2'-bipyridyl in the active species is not clear.

The requirements for selectivity toward a particular product isomer in the dimerization of propylene⁴³⁹ have been investigated by using a square-planar nickel(II) complex with a chelating Schiff base and similar ligands and an alkylaluminum in the presence of a phosphorus atom containing additives. Steric and electronic effects are separated. The observed electronic preference for the anti-Markovnikoff mode of reaction is discussed on the basis of the Chatt model of olefin coordination taking into account the unsymmetrical nature of the propylene π and π^* molecular orbitals.

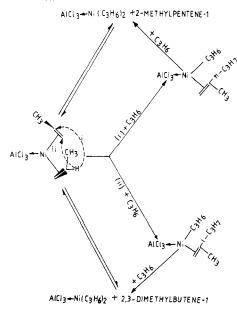

By mixing Ni(CO)₄, various phosphines, and AlCl₃ in a suitable solvent, catalysts that are active toward the dimerization of propylene⁴⁴⁰ are formed. The maximum activity is obtained with a phosphine/aluminum ratio of 2. In a trigonally hybridized nickel (propylene)₂–AlCl₃ complex formed, the coordinated AlCl₃ serves to lower the electron density of the nickel, thereby facilitating the π -bonding of two propylene molecules to the central nickel atom. The complexed olefin moieties are allowed to rotate freely around the metal–olefin bond enabling them to attain sterically suitable orientation which will allow the dimerization to proceed.

The two orientations favored are "transoid" and "cisoid" geometries (Scheme XXVI). The dimerization of the two coordinated propylene units can take place through a concerted electronic rearrangement with a concomitant hydride shift. The electronic rearrange-

SCHEME XXVI. The "Transoid" (a) and "Cisoid" b) Orientations of the Nickel-Bis(propylene) -Aluminum Chloride Complex

SCHEME XXVII. Dimerization Mechanism for the "Transoid" Orientation

ment can take place via metal d orbitals of suitable symmetry. The mechanism for the two orientations are shown in Schemes XXVII and XXVIII.


The NiCl₂-AlCl₃ (1:1) complex in the presence of AlPr₃ is an effective homogeneous dimerization catalyst for propylene.³⁸⁴ Treating NiCl₂ on a solid carrier with AlPr₃, Et₃Al₂Cl₃, or (*i*-Bu)₂AlCl gives a heterogeneous dimerization catalyst of activity comparable to that of the homogeneous catalyst. Catalysts prepared from nickel poly(4-vinylpyridine) complexes¹³⁷ in an ethylene-propylene-norbornene polymer and alkylchloro-aluminums also have been used for the dimerization of propylene. These catalysts are stable over a wide temperature range. Their activity increases with the increasing ability of the solvent to swell the polymer.

4. Rhodium

RhCl₃·3H₂O is reported as a propylene dimerization catalyst in the presence of additives like alcohol¹⁶¹ and nitrobenzene.³³⁷ Rh₂Cl₂(SnCl₃)₄ is effective at 50–70 °C and 1.5–40 atm of propylene.³²⁹ However, addition of 2–3 mol/L of HCl decreases the pressure required and increases the rate and selectivity of the reaction.

5. Palladium

PdCl₂ is used as a catalyst for the dimerization of propylene^{171,173} in the presence of various solvents like chloroform, dichloromethane, and anisole. In all cases

high proportions (65–90%) of straight chain hexenes are formed. However, in the presence of a cocatalyst like EtAlCl₂ and additives (PPh₃, AsPh₃, or SbPh₃) 2-methylpentene is the predominant product.⁴³⁸ Pd-(olefin)Cl₂¹⁷¹ catalyzes the reaction to give 100% n-hexene selectively. When Pd(BZCN)Cl₂ is used, straight chain products are formed. This is associated with the isomerization of olefin. A mechanism involving a hydridopalladium(II) compound as the catalytically active species is suggested.

A homogeneous catalyst solution made up of Pd-(acac)₂, PR₃, and EtAlCl₂ in 1,2-dichloroethane⁴⁴¹ dimerizes propylene selectively up to 95% linear hexenes although at relatively low reaction rate. Replacement of the phosphine by a phosphite increases the rate but considerably lowers the selectivity. The ratio of P/Pd is critical (P/Pd = 2). At P/Pd \geq 5 no catalytic activity is observed, presumably due to the blocking of free sites. Relatively high ratios of Al/Pd are required, indicating that the catalytic species is formed in an equilibrium reaction. Activity is found for $5 \leq \text{Al/Pd} \leq 25$ with an optimum around 20. 36 is the proposed structure for the active species where P is the phosphine.

I. Rare-Earth Elements

1. Cerium

There are two patents^{442,443} on the use of an acetylacetonate complex of the first member of lanthanides for propylene dimerization. According to them a mixture of Ce(acac)₃, PPh₃, and chlorobenzene is stirred at 24–29.5 °C. To this is added Et₃Al₂Cl₃, and propylene

is fed at higher (600 psi) and lower (<150 psi) pressures and the mixture stirred to give the dimers. The yield of dimers is less in the absence of PPh₃.

2. Thorium

Thorium nitrate on treatment with PPh₃ in chlorobenzene solvent^{444,445} and subsequent mixing with Et₃Al₂Cl₃ generates the active catalyst which can dimerize propylene at 150–500 psi and at 115–120 °F to give the dimerized products.

Table IV deals with the published and patent data on the dimerization of propylene. Available kinetic data are summarized in Table V.

V. Criteria for Catalytic Activity⁶

- (A) Titanium metal based complexes are versatile catalysts for the dimerization of olefins. Other commonly used catalysts have been based on the group VIII elements. Of them Fe, Co, Ni, Ru, Rh, and Pd are particularly active.
- (B) For olefin activation it is necessary for the metal to be sufficiently "soft" in nature. So elements of the first transition series (Fe, Co, and Ni) are generally active when bonded with less than two "hard" anions. From higher oxidation states the necessary "reduction" can be effected by a variety of alkyl derivatives of aluminum and magnesium or by other reducing agents. Presence of a Lewis acid enhances the reducing power of some derivatives. For elements of the second transition series the situation is complex because of their "soft" character even in higher oxidation states. Reduction can also be achieved by means of other organic compounds like hydroxylic solvents or the monomer itself.
- (C) The addition of "soft" ligands like phosphine may provide better selectivity. Phosphines can also influence the mode of linkage of monomer to the metal.
- (D) Addition of Lewis acids to a given catalytic system results in either an increase of the reaction rate or a profound modification of the course of the reaction. The effect is specific for each metal and each type of monomer. The explanations for the "Lewis acid effects" are (1) the release of a free coordination site in the transition metal, for example, by the dissociation of a dimeric complex or the competition for anionic and neutral ligands; (2) an increase in the positive charge carried by the metal, and (3) the release of a proton.
- (E) Solvents either promote the catalytic activity owing to their reducing power or enhance the dimerization rate. The nature of the solvent is somewhat critical. If it is too "soft", it competes with the olefin for coordination, and if it is too "hard", it can neutralize the needed Lewis acidity. In several cases the dimerization rate increases with the dielectric constant of the medium consistent with the nature of the ionic complex.

VI. Conclusions

A majority of the title reactions operate in the liquid phase in the presence of a Ziegler-type catalytic system

Complexes	
a	
Med	
2	
Transition	
<u>~</u>	
Propylene b	
ĕ	
Dimerization	
o	
Studies	
7	
Select	
>	
ABLE	
AE	
TABLE IV.	

cat. system reactn conditus pro	reactn conditus	products	comments	ref
$(C_4H_9)_3B$ - MR_n - mH_m (M = Al, Ga, In, Be; R = alkyl; n = valence of metal; m = 0-3)	195-200 °C	Boron 2-methyl-1-pentene		359
[(CH ₃) ₂ CH ₃ Al organoaluminum compounds	170-200°C, 150-200 atm	Aluminum 2-methyl-1-pentene	$E_{\rm a} = 11.7 \text{ kcal/mol}$	360-364 370
organoaluminum compounds $(C_2H_5)_3Al$	dehydronaphthene, 250 atm. 300 °C	2-methyl-1-pentene, (90%)	$E_a = 14 \text{ kcal/mol}$ $AI/C_3H_6 = 0.023$	311 446, 447
$(C_2H_5)AICI_2$		propane (50%), hexene (36%), nonene (3.5%), dodecene (0.5%)		448
(C ₂ H ₅) ₃ Al (C ₂ H ₅) ₃ Al/H ₃ Al/(CH ₃) ₂ AlH/ (C.H. ₂ Al/(CH ₂) ₂ Al/Ph.Al	180 °C, 170 atm 200 atm, 200 °C/240 °C/ 300 °C/350 °C	2-methyl-1-pentene (70%)		449, 450 451
$(C_2H_5)_2H_2$ $(C_2H_5)_3A_1C_{13}$ - $(C_4G_6G_9C_3)_3$ R'_nAlX_{3-n} - BiR_3 (R = R' = alkyl; X =	toluene, 0 °C, 45 min toluene, 20 °C, 2 h	hexenes, 4-methylpentenes hexenes, 4-methylpentenes		452 453
nalogen; $n = 1, 1.5$, of 2) Al $(OR)_3$ (R = Pr or hexyl)	180-240°C, 150-200 atm	hexenes (major), nonene (4–5%)	cat. consumed = 0.5-0.7 kg of Al/ton of crude hexne; product yield is	454
$(C_2H_5)_3$ Al or $[(CH_3)_2CHCH_2]_3$ Al	isooctane, 225–250 °C, 120–200 atm, 1.5–2.0 h	2-methyl-1-pentene (85–90%), 2-methyl- 2-pentene, higher olefins (traces)	z was/ uay	455
$(TiOR)_4 - (C_2H_5)_3A$ $Ti(OR)_4 - (C_2H_5)_3A$	chloroalkanes, 0-50 °C, $_{1-10}$ atm	Titanium unspecified dimers 4-methyl-1-pentene, 4-methyl-2-pentene	$\mathrm{AIR}_3/\mathrm{Ti}(\mathrm{OR})_4<10$	46 210, 211, 456
$Ti(OR)_3(acac)-AIR_3$ (R = Bu, i-Pr)	heptane, 60°C, 9 kg/cm², 5 h	4-methyl-1-pentene (43%), 4-methyl-2- pentene (1.8%), n-hexene (9%),		374
$\mathrm{CH_3TiCl_3^-}(\mathrm{CH_3})\mathrm{AlCl_2} \ (\eta\text{-}\mathrm{C_4H_6})_2\mathrm{Ti}(\mathrm{dmpe})$	$ m CH_2Cl_2/toluene, -70$ °C	Z-nexenes (46.4%) 2,3-dimethyl-1-butene		78, 375 81
CrCl ₃ (py) ₃ /CrCl ₃ (4Etpy) ₃ / CrCl ₃ (PBu ₃) ₂ -(C ₂ H ₃)AlCl ₂	50°C, 100 psig, 1.5 h	Chromium 2-methylpentenes (69%), n-hexenes (31%), nonenes and dodecenes are minor		99, 101
MnCl ₂ -[(CH ₃) ₂ CH] ₃ Al-AlCl ₃		Manganese 2-methyl-2-pentenes, 4-methyl-2-pentenes, 2-hexenes		384
R _p Fe-R' _m AlX _{3-m} -phosphine (R = acyl, allyl, cyclopentadienyl; p = metal valence; R = atyl or aralkyl; x = halozen: m = 1-3)	<i>n</i> -heptane/benzene, -10 to 50 °C, 11 atm	Iron		105
Fe(acac), (C ₂ H ₅) ₂ AlCl-COD ($n = 2$ or 3) Fe(acac) ₂ -(Me ₂ CHCH ₂) ₂ AlCl/ (C ₂ H ₅) ₂ AlCl/(C ₂ H ₅)AlBr ₂	heptane/toluene	2-methyl-2-pentene 4-methyl-1-pentene, 4-methyl-2-pentenes, 2-methyl-2-pentenes, n-hexenes (major) and 2-methyl-1-pentene, 2,3- dimethylbutenes (minor)		386 385

FeCl ₃ -Pr ₃ Al-AlCl ₃		2-methyl-2-pentenes, 4-methyl-2-pentenes, 2-hexenes		384
$CoCl_2-(C_2H_5)_2AlCl/R_5Al/AlCl_3-AlCl_3$ $CoCl_2-(C_2H_5)_6$, Al_2Cl_x ($x=2,3, \text{ or } 4$)	CH ₂ Cl ₂ , 40-80 °C, 150 °C heptane, 40 °C, 43 atm, 16 h	Cobalt hexenes (30%), methylpentenes (70%) hexenes, 2,3-dimethylbutenes, 2-methylpentenes	selectivity to dimers is 95%	384, 387 107, 457–463
CoCl ₂ -Charcoal-(C ₂ H _b) ₂ AlCl R_p Co- R'_n AlX _{3-m} -phosphine (R = acyl, allyl, or cyclopentadienyl; p = metal valency; R = alkyl or aralkyl; x =	n-heptane/benzene, -10 to 50 °C, 1-10 atm	hexenes		464 105
$\mathrm{CoHN_2(PPh_3)_3/CO(N_2)(PPh_3)_3}$	benzene, 20 °C, 1 atm	2-methyl-1-pentene (65.3%), trans-4-methyl-2-pentene (17%), 2-methyl-2-pentene (2.7%), trans-3-methyl-2-pentene (0.9%)		109, 388, 394, 465
		cis-anthyl-2-pentene (0.1%), 2,3-dimethyl-1-butene (2.4%), 2,3-dimethyl-2-butene (1.4%), 3-methyl-1-pentene and 4-methyl-1-pentene (2.8%), cis-4-methyl-2-pentene (1.2%), 3-methyl-1-butene (4.0%), 2-methyl-1-butene (4.0%), 2-methyl-1-butene	$E_{\rm a}=22.9~{\rm kcal/mol;}~\Delta H=22.3~{\rm kcal/mol;}~\Delta S=13~{\rm cal/(mol\cdot K)}$	
(Co(PBu) ₃) ₂ Cl ₂ -R _{6-x} Al ₂ Cl _x L ₂ CoX ₂ -(C ₂ H ₅)AlCl ₂ (L = quinoline, isoquinoline, PPh ₃ , pyridine; X =	chlorobenzene, 23.2-24.2 °C, 30 psig, 6 h	(2.7%), 2-methyl-2-butene (0.6%) dimethylbutenes 2-methylpentenes (70.8%), hexenes (25.3%), 2,3-dimethylbutenes (5.7%)		466 467
Cl, Br) $L_2CoX_2-(C_2H_5)AlCl_2 (L = pyridine, 4-EF-pyridine, quinoline, PPh_5; X = \frac{4-EF-pyridine, quinoline, PPh_5; X = \frac{4-EF-pyridine}{2}$	chlorobenzene, 30 psig, 10-25°C, 18.5 h	2-methylpentenes (67.3%), hexenes (30.7%)		468
Co(acac) ₂ -(C_2H_5) ₂ AlCl/	$heptane/toluene/CHCl_3$	2-methyl-2-pentenes		366
$(C_2H_5)AlCl_2-COD$ $Co(acac)_2-HAl(C_2H_5)_2-L-COD$ $L\cdot Ph_2PN$ Ph_2PN Ph_2PN	methylpentenes, 25 °C, 3 bar, 6 h	2-methyl-1-pentene (85%)		469
Co(acac) ₂ -(C ₂ H ₅)AIB ₇₂ /(i-C ₄ H ₉) ₂ AICl/ (C ₂ H ₅) ₂ AICl/(C ₂ H ₅) ₃ Al ₂ Cl ₃ / (C ₂ H ₅)AICl ₂		4-methyl-1-pentene, 4-methyl-2-pentenes, 2-methyl-2-pentenes, n-hexenes, 2-methyl-1-pentene, 2,3-dimethylbutenes		385
nickel salt- $R_{\Phi x}Al_2Cl_x-PR_3$ (x =	-20 to 50 °C, 1-5 atm	Nickel 2-methyl-1-pentene, hexene, cis-2-hexene,		388, 470–472
Z, 3, or 4) [(π-allyl)NiX] ₂ [(π-allyl)NiX] ₋ AIXPR.		rans-z-nexene, 4-memyr-z-pennene n-hexenes (20–30), 2-methylpentene (68–78%), 2,3-dimethylbutene (2–6%) n-hexene, 2-methylpentene.		143, 240, 243
[(#-811)),\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		2,3-dimethylbutenes		399 399
[(π-allyl)NiX] ₂ -TiCl ₄ /MoCl ₅ / VoCl ₄ /WCl ₆ (π-allyl)NiBr-PCy ₃ -(C ₂ H ₅)AlCl ₂	-75 °C/-55 °C	n-hexenes, 2-methylpentenes, 2,3-dimethylbutenes higher olefins (10-15%), 4-methyl-1- pentene (18%), cis-4-methyl-2-pentene (1.3%), 2,3-dimethyl-1-butene (76%),		30, 107, 147, 149, 241, 459 402
$(\pi\text{-crotyl})\text{NiCl}_2\text{-TiCl}_{\text{4}}\text{-PPh}_3$		2-methyl-1-pentene 4%) 2-methyl-2-pentene	$E_{\rm a}=15.2~{ m kcal/mol}$	403

TABLE 14 (Continued)				
cat. system	reactn conditus	products	comments	ref
$(\tau\text{-allyl})\text{NiBr-AlBr}_3\text{-PPh}_3/\text{PCy}_3$	chlorobenzene, -40 to 0 °C	n-hexenes (20%), 2-methylpentenes (75%)	reaction rate = 4600 g of propene/g of Ni/h; yield is 95.3%	473
cross-linked resins containing diffuoroacetic group supported η^3 -allylic nickel complexes—(C_H)AICL.	chlorobenzene, 25 °C	2,3-dimethylbutenes (2%), methylpentenes (67%), hexenes (31%)	Al/Ni molar ratio = 15.5; conversn of propylene is 95%	404, 405
$Al_2O_3^{**}S_2^{**}$ $Al_2O_3^{**}S_2^{**}$ $Al_2O_3^{**}SiO_2^{**}WO_3$ supported $Ni\langle \tau_{-3}l v l \rangle_{-}$ CH_AlCl.		hexenes, methylpentenes		406
$NiL_2 - (i \cdot C_4 H_3)_2 AiC! - PR_3/P(OR)_3$ (L = AcAcH, Cl. I, NO ₃ ; R = alkyl, isoalkyl, Ph)	toluene/octane, 1 atm	hexenes		401, 413
$Ni[Hf(acac)]_2-(i\cdot C_4H_9)_3Al$	toluene, 80 °C	hexenes (77.8%), 4-methylpentenes (4.3%), 2-methylpentenes (17.2%), 2.3-dimethylbutenes (0.8%)		474
Ni(acac) ₂ -(C ₂ H ₅) ₃ Al/(C ₂ H ₅) ₂ (OC ₂ H ₅)Al/ (C ₂ H ₅)(OC ₂ H ₅) ₂ Al	ethers, 20–40°C	1-hexene (4.2%), cis-2-hexene (32.7%), trans-2-hexene (28.9%), cis-3-hexene (6.0%), trans-3-hexene (5.8%), 4-methyl-1-pentene (1.7%), cis-4-methyl-2-pentene (2.0%), trans-4-methyl-2-pentene (1.8%), 2-methyl-2-pentene (5.6%),	selectivity to linear olefins is 78%	385, 407, 475, 476
$Ni(acac)_{2}(C_{2}H_{5})_{3}Al_{2}Cl_{3}\text{PPh}_{3}$	-50 to 40 °C	2-methylpentenes, 2,3-dimethylbutenes	Ni/AI/P mole ratio = 1.45:16	411
$\mathrm{Ni(acac)_2-(i\cdot C_4H_9)_2AlCl-PPh_3/Pcy_3/Me_Cl)_PB_r}$		4-methyl-1-pentene (23%), other dimers		412
Ni(acac) ₂ -(C ₂ H ₃) ₃ Al ₂ Cl ₃ -R ₃ P (R = PhX; $X = p$ -Cl, p -H, p -Me, p -OMe, o -Me)	toluene	2,3-dimethylbutenes	activity with tertiary phosphines is of the order p -Cl > p -H > o -Me $\approx p$ -Me > p -Ac > $P(C_2H_K)_2$ > PBu_3	142, 401
Ni(acac) ₂ -(C ₂ H ₆) ₃ Al ₂ Cl ₃ -PPh ₃	toluene, 30 °C	n-hexenes, and methylpentenes	cat./cocat./PPh ₃ = 1:8:3; order with respect to propylene = 2; order with respect to cat. = 2	393, 414
Ni(acac) ₂ –(C ₂ H ₆₎₃ AlCl ₃ –PPh ₃	toluene, -50 to -22 °C	n-hexenes, methylpentenes, $2,3$ -dimethylbutenes	propylene/nickel mol ratio = $240-2400$; rate = k [Nij[C _o H ₆], E_a = 13 keal/mol	415
$Ni(acac)_2 - (C_2H_5)_3Al - PPh_3 - BF_3 \cdot OEt_2$	toluene/benzene/ chlorobenzene	methylpertenes, hexenes, 2,3-dimethylbutenes	$Ni(acac)_2/Al(C_2H_5)_3/(PPh_3)/BF_3\cdot OEt_2 = 2:1:4:35$	416
Ni(acac) ₂ (COD)/Ni(acac) ₂ (C ₄ H ₈)– polystyrene-containing PEt ₂ / P(i-Bu) ₂ /P(OEt) ₂ /P(NEt ₂),	alkane solvent	4-methyl-2-pentene (major)	1300–1700 g/h of dimers/g of Ni; cat. is stable >1000 h	417
$\begin{aligned} & \text{Ni}(\text{acac})_2 - (C_4 H_3)_3 \text{AI} \\ & \text{Ni}(\text{acac})_2 - (C_2 H_3)_2 \text{CIAI} - H_2 \text{O} \\ & \text{Ni}(\text{acac})_2 - (C_2 H_3)_3 \text{AI} - \text{PhC} = \text{CH} \end{aligned}$	250 °C, 1800 psi 5 kg/cm², 0° –50 °C, 5 min xylene	2-methylpentenes dimer, higher oligomers 2-methyl-1-pentene (53%), 2-methyl-2- pentene (41%)	dimer/oligomer = 93%	477 478, 479 480
$Ni(acac)_2 - R_{6-x}Al_2Cl_x (x = 2-4) - PPh_3$	CH ₂ Cl ₂ , 600 psig, 40 °C, 17 h	n-hexenes (31%), 2-methylpentenes, 2,3-dimethylbutenes	linear hexenes is 31%	252, 481–484
Ni(acac) ₂ –(C ₂ H _{b/3} Al ₂ Cl ₃ –PPh ₃ Ni(acac) ₂ –R ₃ Al–BuPCl ₄	30 °C, 1.5-3.2 atm, nitrogen 3 h	C ₆ alkenes (major), C ₉ olefins (minor) methylpentenes, 2,3-dimethylbutenes, hexenes, higher oligomers	propylene conversn to dimers is 92%	485 486

of the additive

cat. system	reactn conditus	products	comments	ref
Ni(OAc) ₂ -(C ₂ H ₆)AlCl ₂ -PhSSPh	chlorobenzene, 20 °C	4-methyl-1-pentene (0.4%), cis.4-methyl-2-pentene (1.2%), trans-4-methyl-2-pentene (9.6%), 2-methyl-1-pentene (6.3%), C. olefins		270
$Ni(O_2CR)_2-R_{6-x}Al_2X_x-PPh_3/PX'_3$ (X' = halogen, alkoxy group)	0 to 10 °C, 1 atm	C ₆ olefins	≤90% selectivity to methylpentenes	324, 325, 418
$Ni(O_2CR)_2-(C_2H_5)_2AIF$ (HO ₂ CR = oleic acid, isopropylaglicylic acid)	heptane, 50 °C, 72 min	<i>n</i> -hexene (40–51%), 2-methylpentenes $(45-57\%)$, 2,3-dimethylbutenes $(2-4\%)$	37.6% conversn	107, 145, 146, 459, 507
Ni(O ₂ CH) ₂ -(C ₂ H ₂) ₂ AlCl ₂ Ni(O ₂ CR) ₂ -(C ₂ H ₂) ₃ Al ₂ Cl ₃ /(C ₂ H ₅)AlCl ₂ (RCO ₂ H = isopropylsalicylic acid, C ₁₇ acid)	40°C, 3 h isooctane, -20 to 20°C, 1 h	2-methyl-2-pentenes cis-2-hexene (2.3-5%), trans-2-hexene (2.3%), 1-hexene (7.3%), 2,3-dimethyl-1- butene (6.3%), 2,3-dimethyl-2-butene		478 323
		(0.4%), 2-methyl-1-pentene (5-22.5%), 3-methyl-1-pentene and 4-methyl-1- pentene (0.3-2%), 2-methyl-2-pentene (10-51.8%), cis-4-methyl-2-pentene (1.7-6.6%), trans-4-methyl-2-pentene		
$Ni(O_2CR)_2-(C_2H_3)_3AI_2CI_3$ (RCO ₂ H = p -toludine-m-sulfonic acid, o -aminobenzenesulfonic acid)	toluene, argon, 50°C, 12 h	4-methyl-1-pentene (1.8%), 4-methyl-2-pentene (53.1%), 2-methyl-1-pentene (3.8%), 2-methyl-1-pentene (3.8%), 1-hexene (17.7%), 3-hexene (4.1%),	86% selectivity to dimers; total conversn is 87% of propylene	508
Ni(O ₂ CR) ₂ -(C ₂ H ₅) _{6-x} AlX _x -PPh ₃ /PCl ₃ /	toluene, 20 °C, 5 bar, 1-5 h	2,3-dimethylbutenes (1.2%) n-hexene, 2-methylpentene, 2,3-	yield of dimers is 82.2%	509–512
$P(t-Pr)_3$ (CO ₂ H = naphthenoic acid) Ni(O ₂ CR) ₂ -AlCl ₃ -(C ₂ H ₅) ₃ Al (RCO ₂ H =	toluene, 10 °C	dimethylbutenes, 4-methylpentenes 2-methyl-2-pentene (major)	of propylene yield of dimers is 96.1%	513
octenouc actu) Ni(O ₂ CR) ₂ -PCl ₃ -(C ₂ H ₅) ₃ Al (RCO ₂ H = octenoic acid)	toluene, 1 h, 0 °C	2-methyl-1-pentene (6%), 2-methyl-2-pentene (55%), 4-methyl-1-pentene (0.4%), 4-lmethyl-2-pentene (16%), 2,3-dimethyl-1-butene (3%), 2,3-dimethyl-2-butene (14%), trans-2-	yield of dimers is 86.7%	514
Ni octenoate- $(C_2H_5)_3Al-BF_3\cdot Et_2O$ Ni $(CH_3COCH_2CO_5)_2-(C_2H_5)_2AlCl-$	toluene, 50 °C, 1 h 2-methyl-1-pentene/4-methyl-	nexenes (9.5%) dimer (92%) 2-methyl-2-pentene		515 227
$C_2H_5AlCl_2$ $Ni(O_2CR)_2-(C_2H_5)_3Al-SnCl_4$ (RCO ₂ H =	2-pentene, 25 °C, 1 h toluene, 10 °C		yield of dimers is 87.7%	516
Ni(O ₂ CR) ₂ -(C ₂ H ₃) ₃ Al/[(C ₂ H ₅) ₂ Al] ₂ O- PCy ₃ /isoprene (RCO ₂ H = PCy ₃ /isoprene (RCO ₂ H = PCy ₃) ₃ Al/(RC ₂ H = PCy ₃) ₄ Al/(RC ₂ H = PCy ₃ H = PCy	toluene, 20 °C, 4 kg/cm², 3 h	mixture of dimers	conversn to dimers is 79.4%, selectivity to α -olefins is	238, 517, 518
napnunenoic acid) $Ni(Bu)(CS_2O)-(C_2H_5)_2AICI-H_2O$	5 kg/cm ² , 0-50 °C, 5 min	2-methyl-2-pentene, 4-methylpentenes,	dimer/oligomer = 93%	478, 479
$NiCl_2(PPh_3)_2-R_{6-x}Al_2X_x$ (x = 2, 3, or 4)	toluene, 20 °C	n-bezene, 2-methylpentenes, 2,3-dimethylbutenes, 4-methyl-2-pentenes, 665,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		280, 619
$NiCl_2^-2[PPh(cyclohexyl)_2]-(C_2H_5)_2AlCl-H_2O$	0 °C, 1 h	4-methyl-1-pentene (10%), cis-4-methyl-2-pentene (13.2%), trans-4-methyl-2-pentene (15.55%), 2,3-dimethyl-1-butene (43.1%), 2-methyl-1-pentene	conversn is 80%	520
$NiX_2(PR_3)_2 - R_{6-x}Al_2X_x$ (X = Cl, Br; R = Dr. Dr. $x = \frac{9}{2}, \frac{9}{2}, \frac{9}{2}$	chlorobenzene	(13.3%), n -nexene (3.3%) C_6 olefins	cocat./cat. = 2	253, 281, 510, 591
Bu, Fn; $x = z$, 3, or 4) NiCl ₂ (PPh ₃) ₂ /NiCl ₂ (PPh ₂ H) ₂ /	0-22 °C	C ₆ olefins		466, 522

C ₂ H ₃ 3Al ₂ Cl ₃ toluene, chlorobenzene, n-C ₂ H ₂ Cl ₃ toluene chlorobenzene, n-C ₂ H ₂ Cl ₃ toluene 2.3 EtAlCl ₃ /Et ₂ AlCl -16 °C 2.1 EtAlCl ₃ /Et ₂ AlCl -16 °C 2.1 Al ₂ Cl ₃ / Al ₂ Cl ₃ /	cat. system	reactn conditns	products	comments	ref
toluene 2,5 2-6,44, -16 °C 2-1 2-12/Et ₂ AlCl -16 °C 2-1 40-80 °C		oluene, chlorobenzene, CH ₂ Cl ₂	n-hexene, isohexene	optimum activity at Al/Ni ratio of 5:1 to 7:1; n-hexene/isohexene ratio = 3:7	433
C ₆ H ₄ , C ₆ H ₄ , C ₆ H ₄ , 1 ₂ /Et ₂ AlCl 1 ₂ /Et ₂ AlCl 1 ₂ /Et ₂ AlCl 1 ₂ -20 to 50 °C, 1–5 atm C ₆ hydrocarbons, 20–60 °C, 1800 lb/in. ² 1800 lb/in. ² 1900 lb/in. ² 190 °C, 3 h 10 °C, 3 h 10 °C, 3 h 10 °C, 1 atm, n-hexene/toluene/ me benzene chlorobenzene, 28 psi, 35 °C, 3.5 h chlorobenzene, N ₅ , 0 °C, 100 min, 860 mm propylene		Juene	2-hexene, 1,2-dimethylcyclobutane	increase of temn (90 to	155
2-16°C 2-15/Et ₂ AlCl 40-80°C 40-80°C 40-80°C 40-80°C 40-80°C 1800 lb/in.² 1800 lb/in.² 1800 lb/in.² 145°F, 3 h 10°C, 3 h 10°C, 3 h 10°C, 1 atm, n-hexene/toluene/ me benzene chlorobenzene, 28 psi, 35°C, n-l 3.5 h chlorobenzene, N ₂ , 0°C, 2-r 100 min, 860 mm propylene			4-methyl-1-pentene	20 °C) leads to C ₉ olefins	Q.
2-1 40-80 °C 40-80 °C 40-80 °C hydrocarbons, 20-60 °C, 2-1 1800 lb/in.² 2,3 1800 lb/in.² 2,3 19.°C, 3 h 10 °C, 3 h 4-1 10 °C, 3 h toluene, 10 °C, me benzene chlorobenzene, 28 psi, 35 °C, n-1 3.5 h chlorobenzene, N ₂ , 0 °C, 2-1 100 min, 860 mm propylene		16 ℃	2-methyl-2-pentene, 4-methyl-2-pentene	AI/Ni = 100	438
2-20 to 50 °C, 1–5 atm bydrocarbons, 20–60 °C, 2-1 145 °F, 3 h 2,5 l 10 °C, 3 h 4-1 l 0 °C, 3 h 4-1 l 0 °C, 1 atm, n-hexene/toluene/ me benzene chlorobenzene, 28 psi, 35 °C, n-1 3.5 h chlorobenzene, N ₂ , 0 °C, 1 100 min, 860 mm propylene	J ₃ -PPh ₃		2-hexene, 4-methyl-2-pentene, 2-dimethyl-1-hutene	max activity with 2:1	440
40-80 °C 10-20 to 50 °C, 1-5 atm 100 lb/in.² 100 lb/in.² 100 c, 3 h 100 c, 3 h 100 c, 1 atm, n-hexene/toluene/mebnzene 100 °C, 1 atm, n-hexene/toluene/mebnzene 100 min, 860 mm propylene	iCl ₂ treated on a solid ³ H ₇) ₃ Al/(C ₂ H ₅) ₃ Al ₂ Cl ₃ / H.) Al-Cl.		2-methyl-2-pentene, 4-methyl-2- pentene, 2-hexene	Control	384
2.2 2.0 to 50 °C, 1–5 atm 1800 lb/in.² 1800 lb/in.² 145 °F, 3 h 10 °C, 3 h 10 °C, 3 h toluene, 140–160 °F, 70 min 2,3 toluene, 10 °C, me chlorobenzene, 28 psi, 35 °C, 3.5 h chlorobenzene, N ₂ , 0 °C, 100 min, 860 mm propylene		℃ 08-0:	hexenes (30%), methylpentene (70%)	>95% selectivity to dimerization of selectivity toward n-hexenes increased with temp up to 50% at 150 °C	387
10°C, 1-5 atm C ₆ hydrocarbons, 20-60°C, 2-1 1800 lb/in. ² 145 °F, 3 h 10°C, 3 h 10°C, 3 h toluene, 140-160°F, 70 min 2,3 toluene, 10°C, me chlorobenzene, 28 psi, 35°C, n-1 3.5 h chlorobenzene, N ₂ , 0°C, 1-1 3.5 h chlorobenzene, N ₂ , 0°C, 2-r 100 min, 860 mm propylene			2,3-dimethyl-2-butene		539
ic, 145 °F, 3 h Ph, 10 °C, 3 h toluene, 140–160 °F, 70 min 2,3 toluene, 10 °C, me benzene chlorobenzene, 28 psi, 35 °C, n-1 3.5 h chlorobenzene, N ₂ , 0 °C, 1-1 3.5 h chlorobenzene, N ₂ , 0 °C, 2-r 100 min, 860 mm propylene	M-BCl ₃	20 to 50 °C, 1–5 atm ydrocarbons, 20–60 °C, 1800 lk/in.2	C_6 olefins 2-methyl-1-pentene		540 541
10 °C, 3 h Ph, toluene, 140–160 °F, 70 min 2,3 toluene, 10 °C, me benzene chlorobenzene, 28 psi, 35 °C, n-1 3.5 h chlorobenzene, N ₂ , 0 °C, 100 min, 860 mm propylene		45 °F, 3 h	2,3-dimethylbutene (10.9%), 2-methylputene (66.95%), n-hexene		263
10 °C, 3 h Ph, toluene, 140–160 °F, 70 min 2,3 toluene, 10 °C, me benzene chlorobenzene, 28 psi, 35 °C, n-1 3.5 h chlorobenzene, N ₂ , 0 °C, 100 min, 860 mm propylene			(20.10%), nollene, uecelle n-hexene 9-methylnentene		458
10 °C, 3 h Ph, toluene, 140–160 °F, 70 min 2,5 toluene, 10 °C, ne toluene, 10 °C, me benzene chlorobenzene, 28 psi, 35 °C, 3.5 h chlorobenzene, N ₂ , 0 °C, 100 min, 860 mm propylene	$_{\rm e}^{2}$ $_{\rm$		2-methyl-1-pentene, 2-methyl-2-pentene, 4-methyl-1-pentene, 4-methyl-2-pentene, 2,3-dimethyl-1-buttene, 2,3-dimethyl-2-buttene, cis-2-hexene, trans-2-hitene		542
toluene, 140–160°F, 70 min 2,5 toluene, 10°C, me benzene 0°C, 1 atm, n-hexene/toluene/ me benzene chlorobenzene, 28 psi, 35°C, n-3.5 h chlorobenzene, N ₂ , 0°C, 100 min, 860 mm propylene	Ph,	0 °C, 3 h	4-methyl-1-pentne (8.55%), 4-methyl-2-pentene (51%), 2,3-dimethyl-2-butene (2%), 2-methyl-1-pentene (3%), 2-methyl-2-pentene (10%), n-hexene (25%)	molar ratio of cat./cocat. is ca. 1:5	543
toluene, 10°C, me tyrene— 0°C, 1 atm, n-hexene/toluene/ me benzene chlorobenzene, 28 psi, 35°C, n-1 3.5 h chlorobenzene, Ns. 0°C, 2-1 100 min, 860 mm propylene		oluene, 140–160 °F, 70 min	2,3-dimethylbutenes (15%), 2- methylpentenes (53%), hexene (16%), C ₉ olefins (15%)		295, 544
l ₂ chlorobenzene, 28 psi, 35 °C, n-1 3.5 h chlorobenzene, N ₂ , 0 °C, 100 min, 860 mm propylene		oluene, 10 °C,	methylpentenes, n-hexenes, 2,3-dimethylbutenes	B/Ni = 10:1 yield of dimers vary from 1000 to 4200 mol/g atom of Ni	425
chlorobenzene, 28 psi, 35 °C, n-3.5 h chlorobenzene, N ₂ , 0 °C, 2-100 min, 860 mm propylene		°C, 1 atm, n-hexene/toluene/ benzene	methylpentenes (70.3%), 2,3-dimethylbutenes (15.8%), n -hexene (13.9%)	ļ.	428, 545, 546
chlorobenzene, N ₂ , 0 °C, 2-100 min, 860 mm propylene		hlorobenzene, 28 psi, 35 °C, 3 5 k	n-hexene, 2-methylpentenes,	44% wt of cocat. is mixed	547
. 17 000		hlorobenzene, N_2 , 0 °C, 100 min, 860 mm propylene	2.3-minchyloutenes 2.methyl-1-pentene (4%), 2-methyl-2- pentene (48%), 4-methyl-1-pentene (1%), 4-methyl-2-pentene (34%), 2,3-dimethylbutenes (5%), n-hexenes	Al/Ni = 40:1, rate of reaction = 49 kg/g of Ni/h; the products consist of dimers = 84%, trimers =	548
		chlorobenzene, 0 °C, 15 min,	(8%) n -hexene, 2-methylpentenes,	16% Al/Ni ratio is 30:1	549

	100 mm propylene	2,3-dimethylbutenes		
$ m NiX_2-AICl_3-PR_3$		n-hexene, 2-methylpentenes, 2 3-dimethylputenes		269, 316, 550
NiBr(i-C.H.),Al	S 59	4-methyl-1-pentene (5.1%), 4-methyl-2-		479
11212 (F-4419)3+1		pentene (57.4%), 2-methyl-2-pentene (2.6%), trans-2-hexene (26.8%), cis-2-hexene (5.5%), 2,3-dimethyl-2-hexene (5.6%), 2,3-dim		
$\mathrm{NiCl_2} ext{-}\mathrm{E}t_3\mathrm{Al_2}\mathrm{Cl_3} ext{-}(i ext{-}\mathrm{C_3}\mathrm{H}_7)_3\mathrm{P}$	o-dichlorobenzene, 1 h, -10 °C	2,3-dimethylbutenes	conversn of propylene = 90-5%; selectivity to the product 76-81%	551
NiCl ₂ /NiBr ₂ -(C ₂ H ₅₎₂ AlCl-PPh ₃ /PBu ₃		2,3-dimethylbutenes	the product yield increases with increase in basicity of ligands	552
$NiCl_2$ - $(C_2H_5)_3Al$ - $HCl/(i$ - $C_3H_7)_3P/$ butadiene	chlorobenzene, 35–40 °C, 15 atm. 9 h	C ₆ olefins and C ₉ olefins		553
NiCl ₂ /NiCl ₂ supported on a solid carrier-(C ₃ H ₇) ₃ Al/(C ₂ H ₅) ₃ Al ₂ Cl ₃ /(C ₄ H ₇) ₃ Al ₂ Cl ₃ Al		2-hexenes, 2-methyl-2-pentenes, 4-methyl-2-pentenes	activity of the heterogenized cat. are comparable with that of homogeneous cat.	384, 554
NiBr ₂ L ₂ -(C ₂ H ₅) ₃ Al ₂ Cl ₃ (L = hexamethylphosphoramide)		n-hexenes (68%), 41-methylpentenes (28%)		315, 555
$NiCl_2L_2$ (L = N,N'-dicyclohexyl-2-	benzene, 30 psig, 30 min	4-methyl-1-pentene, n-hexene, 9 3-dimethylhitenes 2-ethylhitenes		556
$(c_2c_2)_{2-(C_2H_5)_3}AI/(C_2H_5)_2AI(OEt)$		n-hexene (75–80%), 2-methylpentenes (20–25%)		475, 476
NiCl ₂ (BuNH ₂) ₄ -(C ₂ H ₅)AlCl ₂ NiSO ₄ (BuNH ₂) ₄ /NiSO ₄ (py) ₄ / Ni(ClO ₄) ₂ (py) ₄ /NiSO ₄ (RNH ₂) ₂ - (CH ₂)AlCl ₂ /(C ₂ H ₅)AlCl ₂ (RNH ₂ =	chlorobenzene –10 to 10 °C, <1 kg/cm²	2-methyl-2-pentene (60%) 2-methyl-2-pentene	AI/Ni = 5-20	557 527
intaine) Ni(NO ₃₂ (py),-(C ₂ H ₅)AlCl ₂ NiL ₂ -(C ₂ H ₅)AlCl ₂ (L = N,N-dimethyl- 2-mercaptoethylamine)	chlorobenzene, 0 °C, 20 min chlorobenzene, 17.5–24.6 °C, 30 min	2-methyl-2-pentene (51%) 2-methylpentane (60.3%), hexane (33.1%), 2,3-dimethylbutane (5.2%), 3-methylpentane (1.4%)		51 4 557
Ni(SacSac)PPh ₃ Cl-(C ₂ H ₅) ₂ AlCl	toluene, -15 ± 2 °C, 70 min	dimethylbutene (10%), methylpentene (74%), hexene (16%)		559
Ni[poly(4-vinylpyridine)]–(C ₂ H ₅)AlCl ₂ / (C ₄ H ₅) ₂ AlCl	chlorobenzene	2-methylpentane, n-hexane, 2,3-dimethylbutane, 2-ethylbutane	the cat. offered stable activity over a range of temperatures	137, 262, 560
[Ni(Me ₂ SO) ₆][NiCl ₄]–(C ₂ H ₅) ₃ Al ₂ Cl ₃	α -chloronaphthalene, 0 °C, 2 min, 13 s	2.methyl-2-pentene (>70%), n -hexenes, 2,3-dimethylbutenes	cat./cocat. mole ratio = 7:50, conversn is 95.5%; selectivity to dimers is 96%	561
[Ni(R_2 SO) ₆][MX ₄]-(C_2 H ₅) ₃ Al ₂ Cl ₃ (R = Me, Et, Ph, M = Fe, Ni, or Co; X = Cl, Br, or l)	1-chloronaphthalene, -2 to 10 °C	hexenes, methylpentenes	90-100% conversns with ~95% yields to C ₆ containing up to 75% methylpentenes; addition of moisture increases reaction rate	562
$NiCl_2(Ph_2SO) - (C_2H_5)_3Al_2Cl_3$	1-chloronaphthalene, $2.5 \text{ min}, 0 ^{\circ}\text{C}$	methylpentenes (75.2%), n -hexene (22.4%), 2,3-dimethylbutenes (2.4%)		563
NiL ₂ - $(C_2H_5)_2$ AlCl/ (C_2H_5) AlCl ₂ -KOH (I, = salicylaldimine)	chlorobenzene, 30 min, 20 °C	hexene, nonene		564
NiL ₂ supported on bochmite- (C_2H_5) $_3Al_2Cl_3/(C_2H_5)_2AlCl$ (L = n -butylsalicylaldimine)	chlorobenzene, 20°C	C_6 olefins (72%), C_9 olefin (20%), higher oligomers		32 6

cat. system	reactn conditus	products	comments	ref
CuAlCl ₄ /Cu ₂ Cl ₂ -(C ₂ H ₅) ₂ AlCl	isooctane, 1 atm	Copper trans-4-methyl-2-pentene (30.4%), hazenes (27.4%), 2-methyl-2-pentene (4.5%), 2-methyl-2-pentene (4.5%), 2-methylpentane (1.3%), 4-methyl-1-pentene (1.0%), 2-methyl-1-pentene (0.6%)		33
$Z_{\mathbf{D}}Al_2Cl_{\mathfrak{g}^+}(C_2H_5)AlCl_2/(C_2H_5)_2AlCl$		Zinc trans-4-methyl-2-pentene		33
(#-C ₄ H ₈) ₂ Zr(dmpe) (#-allyl)ZzBr ₃ /(benzy))ZrBr ₃ - (C,H.) _A AlCl/(C,H.)AlCl,		Zirconium 2,3-dimethyl-1-butene C ₆ olefins, higher <i>a</i> -olefins		81 332
Zr(acac), -(C2H5)3Al2Cl3-PPh3/PBu3	155 °F	C _e olefin		376
RR' _n R?NbAl _m [R = cyclopentadienyl, Me-substituted cyclopentadienyl, Me ₂ C-CH ₂ ; R' = PhCH ₃ , Me ₃ C-CH ₂ ; n = 0, 1; R² = Me ₃ CCH, PhCH, (CH ₂) ₄ , CH ₂ (CHMe ₁ ;CH ₂ ; A = halogen; m = 1, 2 -YRR'R ⁵ [Y = N, P, As, Sb, Bi; R³, R', R ⁵ = alkyl, aralkyl, PhCMe ₂ CH ₂ CH ₂ , aryl]	decane	Niobium C ₆ olefin		377
RhCl3-HCl RhCl3-3H ₂ O RhCl3-3H ₂ O-BiPh ₃ /SbPh ₃ RhCl3-3H ₂ O RhCl3-(SnCl)HCl	CHCl ₃ /PhNO ₂ alcohol MAOH FO-70 of 15-40 stre	Rhodium C ₆ olefins (major), 2-methyl-2-pentene n-hexene (43%), 2-methylpentene (57%) n-hexene (15%), 2-methylpentene (85%) mixed dimers		160 171, 337 565 161
	Medit, 50-70 C, 1:3-40 alm		use of HCI decreases the pressure required, increases the rate and selectivity of the reaction	339
PdCl ₂ /PdCl ₂ (BZCN)	F CHCl ₃ /CH ₂ Cl ₂ /anisole	Palladium hexenes (65–90%)	with PdCl ₂ (BZCN) isomerization of olefin	171, 173, 337
$PdCl_2$ -(C_2H_b)AlCl $_2$ - PPh_3 /Aa Ph_3 /Sb Ph_3		2-methylpentenes (predominant)	takes place	565
PdCl ₂ $Pd(acac)_2-(C_3H_5)AiCl_2-PR_3$ $(R = Bu, OPh)$	acetic acid, HCl CH ₂ Cl ₂	mixed hexenes n-hexenes (95%)	replacement of PR ₃ by P(OR) ₃ increases the rate but lower selectivity.	336 345, 441
[(r-allyi)PdCl] ₂ -(C ₂ H ₅)AlCl ₂ -P(OR) ₃ PdL ₂ -(C ₂ H ₅)AlCl ₂ supported Pd(CN) ₂	chlorobenzene, 100 psig, 80 °C 100 °C, 775 psig, 2 h	unspecified dimers hexenes (92.5%) dimers (66%), trimer (11%), oligomers (8%)	cat./cocat. mole ratio = 1:50 linear dimers $\sim 73\%$	239 566 567
AgAlCl,-(C2H5)AlCl2/(C2H5)2AlCl		Silver trans-4-methyl-2-pentene, 2-methyl-2-pentene		33

		Tantalum		
$(\eta^{\delta}\text{-}\mathrm{C_{s}Me_{s}})\mathrm{TaCl_{2}}$		cis-2,3-dimethyl-1-butene, trans-2,3-		9, 94, 95
$(C_5H_6)Ta(CHCMe_3)Cl_2$		dimethyl-2-butene 2,3-dimethyl-1-butene	this system is inactive	96 °6
(C.H.)Ta(CHCMe.)Cl.	deceme 45 °C 45 nai	9 3-dimethyl_1-hutene (09%)	after 20 turnovers	
7-0 (8-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	and or to or torroom	of or		110
WCl _e -(C ₂ H ₂) ₂ Al ₂ Cl ₃ -MeNH ₂ /c-C ₆ H ₁₁ NH ₂ / PhNH ₂ /P-XC ₂ H,NH ₂ (X = Cl ₁ R ₂ etc.)	chlorobenzene, 20 °C, 1 h	Tungsten 2,3-dimethyl-1-butene (64%), 3-mosthyl-1-nontone (2007)	cat./cocat. mole ratio = 1:10;	379, 380
WCl ₆ /WBr ₆ -(C ₂ H ₆)AlCl ₂ -2.4,6 R ₃ CeH ₂ NH ₂ (R = H, Br, Cl)	chlorobenzene, 60°C, 1 h	C ₆ olefins	car., annue more rau0 = 1;z conversn of propylene is 39%; selectivity for C ₆ olefins	207
WCl ₆ -phenols-(C ₂ H ₅) ₃ Al ₂ Cl ₃ -PhNH ₂		2,3-dimethyl·1-butene (53.5%), 2-methyl- 1-pentene (37%), 4-methyl·1-pentene (7.7%)	is 98% cat./phenol mole ratio = 1:1; conversn of propylene is 94% with selectivity to	381
WCl ₆ -BzOH-(C ₂ H ₅) ₃ Al ₂ Cl ₃ -PhNH ₂		2,3-dimethyl-1-butene, 2-methyl-1- pentene, 4-methyl-1-pentene	cat./BzOH mole ratio = 1:1; conversn of propylene is 77% with selectivity to	382
$WCl_{6}-(RCO)_{2}CH_{2}-(C_{2}H_{5})_{3}Al_{2}Cl_{3}-$ $PhNH_{2} (R = Me, CMe_{3}, Ph)$	chlorobenzene	4-methylpentene (5.3–6.3%), 2,3- dimethyl-1-butene (43–54%), 2-methyl- 1-pentene (28–31%)	dimers is 90% WCL ₆ (RCO) ₂ NH ₂ mole ratio = 1:1, conversn of propylene is 69-74% with selectivity to dimers 76-92%	383
PtCl_2 - $(\mathrm{C}_2\mathrm{H}_5)\mathrm{AlCl}_2$		Platinum n-hexene (40%), 2-methylpentene (60%)		565
Ce(acac) ₃ -(C ₂ H ₆) ₃ Al ₂ Cl ₃ -PPh ₃ Ce(acac) ₃ -(C ₂ H ₆) ₃ Al ₂ Cl ₃ -PPh ₃	chlorobenzene, 600 psig, 95 °F, 3.5 h chlorobenzene, 100–125 °C, 150 psig, 60 min	Cerium 2-methylpentenes and 2,3-dimethylbutenes conversion of propylene (78%), n-hexenes (22%) yield of dimer is lower in C ₆ olefins the absence of PPh ₃	conversion of propylene is 8% yield of dimer is lower in the absence of PPh ₃	442
Th(NO ₃),-(C ₂ H ₅) ₃ Al ₂ Cl ₃ -PPh ₃	chlorobenzene, 350-500 psig	Thorium C ₆ olefins	yield of dimers is 61%	444
Th(NO ₃),-(C ₂ H ₅) ₃ Al ₂ Cl ₃ -PPh ₃	115–120 °C, 2.5 n chlorobenzene, 115–120 °F, 150–1500 psig, 3 h	2,3-dimethyl-1-butene, 2-methyl-2-pentene	cat./PPh ₃ mole ratio = 1:8.5	445

TABLE V. Representative Kinetic Data for the Dimerization of Propylene^a

cat. system	reactn condtns	rate data (T, °C)	remarks	ref
$\operatorname{CrCl}_3(\operatorname{py})_3 - (\operatorname{C}_2H_5)\operatorname{AlCl}_2$	chlorobenzene/cyclohexane, 100 psig, 1.5 h	1.5 g/(L·min) (50)	data for similar chromium complex given	99
$Co(N_2)(PPh_3)_3$	benzene, 1 atm	1.92 × 10 ⁻² mol ⁻¹ L·min ⁻¹ (10)	$E_a = 22.9 \text{ kcal/mol};$ $\Delta H^* = 22.3 \text{ kcal/mol};$ $\Delta S^* = 13 \text{ cal/(mol \cdot K)}$	388
$Co(acac)_3$ - $HAl(C_2H_5)_2$ - PPh_3	methyl-pentenes, 3 bar, $[Ph_3P]/[cat.] = 1$	2.22 g/(L·min) (25)	data for various [Ph ₃ P]/ [cat.] ratios given	25
$NiCl_2-C_4H_6-Al(C_2H_5)_3$	chlorobenzene, 15 atm, Al/Ni = 2	140 g/min (35-40)		1
Ni[Hf(acac)] ₂ -i-Bu ₃ Al	toluene, $Al/Ni = 4$	1.7 g/(L·min) (80)		50
$(C_6H_5)NiBr(PPh_3)_2-BF_3$ OEt_2-H_2O	CH ₂ Cl ₂ , 1 atm, n-hexane, 1 atm	$9.6 \times 10^{-3} \text{ g/min } (0),$ 0.045 g/min (0)	data in various solvents	289
Ni(SacSac)PEt ₃ Cl– (C ₂ H ₅) ₂ AlCl	toluene, 6 h, chlorobenzene, 6 h	1.3 g/(L·min) (-15), 6.64 g/(L·min) (-15)	rate data for similar nickel complexes given	51
Ni(acac) ₂ -(C ₂ H ₅) ₃ Al ₂ Cl ₃ -PPh ₃	toluene, 1 atm	$6.75 \times 10^{-2} \text{ mol}^{-1} \cdot \text{L} \cdot \text{s}^{-1} (-20)$	$E_a = 13 \text{ kcal/mol}$	415
$R'R_3P[(R_3P)NiCl_3](R' = benzyl;$ $R = isopropyl)-Et_3Al_2Cl_3$	toluene, 860 mm, Al/Ni = 100	356.4 g/(L·min)	data for various Al/Ni ratios	436

consisting of a transition-metal derivative and an organoaluminum compound. Many mechanisms have been proposed for the dimerization reaction. The most notable among them are Cossee's mechanism, Belov's proposal involving bititanium species, and Schrock's mechanism involving metallacyclopentane. More investigations are in order to get a more decisive picture on the dimerization course. The dimerization of propylene can be complex owing to the possibility of the formation of many products depending on the nature of insertion. It is also observed that apart from transition-metal-based catalysts, studies based on rare-earth elements are scarse. Several industrial processes are known for the dimerization of propylene: however, only pilot plant studies are available for the conversion of ethylene to linear dimers.

Registry No. Ethylene, 74-85-1; propylene, 115-07-1.

VII. References

- (1) U. Birkenstock, H. Bonnemann, B. Bogdanovic, D. Walter,
- (1) and G. Wilke, Adv. Chem. Ser., No. 70, 250 (1968).
 (2) M. Tsutsui, J. Aryoshi, T. Koyano, and M. N. Levy, Adv. Chem. Ser., No. 70, 266 (1968).
 (3) V. Sh. Feldblyum and N. V. Obeshchalova, Russ. Chem. Rev.
- (Engl. Transl.), 37, 789 (1968).
 (4) G. Wilke in "Fundamental Research in Homogeneous Catalysis"; M., Tsutsui, Ed., Plenum Press; New York, 1979; Vol. 3, p 1.
- (5) B. Bogdanovic, B. Henc, H.-G. Karmanns, G. Nussel, D. Walter, and G. Wilke, *Ind. Eng. Chem.*, 62, 34 (1970).
 (6) G. Lefebvre and Y. Chauvin in "Aspects of Homogeneous
- Catalysis", R. Ugo, Ed., Carlo Manfredi, Milan, 1970, Vol. 1,
- (7) K. Fischer, K. Jonas, P. Misbach, R. Stabba, and G. Wilke, Angew. Chem., Int. Ed. Engl. 12, 943 (1973).
- (8) G. Henrici-Olive and S. Olive, Transition Met. Chem. (Weinheim, Ger.), 1, 109 (1976).
- (9) R. R. Schrock, J. Sancho, and S. McLain, Pure Appl. Chem., **52**, 729 (1980).
- (10) C. Masters, "Homogeneous Transition Metal Catalysis—A Gentle ART", Chapman and Hall, New York, 1981, p 135.
 (11) W. Mowart, A. Shortland, G. Yagupsky, N. J. Hill, M. Yagupsky, and G. Wilkinson, J. Chem. Soc., Dalton Trans., 533
- (12) G. Henrici-Olive and S. Olive, Adv. Polym. Sci., 15, 1 (1974).
- G. Henrici-Olive and S. Olive, Adv. Polym. Sci., 15, 1 (1974).
 G. Henrici-Olive and S. Olive, Chem. Tech., 746 (1981).
 G. W. Parshall, "Homogeneous Catalysis. The Applications and Chemistry of Catalysis by Soluble Transition Metal Complexes", Wiley, New York, 1980, p 61.
 A. Carbonaro, A. Greco, and G. Dallosta, J. Organomet. Chem., 20, 177 (1969).
 R. Barone, M. Chanon, and M. L. H. Green, J. Organomet. Chem., 185, 85 (1980).
- Chem., 185, 85 (1980).
- (17) H. Bestian and K, Clauss, Angew. Chem., 75, 1068 (1963).
 (18) A. W. Langer, J. Macromol. Sci., Chem., 4A, 775 (1970).

- G. Henrici-Olive and S. Olive, Angew. Chem., 82, 255 (1970); Angew. Chem., Int. Ed. Engl., 9, 243 (1970).
 C. J. Attridge, R. Jackson, S. J. Maddock, and D. T. Thompson, J. Chem. Soc., Chem. Commun. 132 (1973).
 K. Maruya, Sehiyu Gakkaishi, 16, 452 (1973).
 A. Ozaki, Yuki Gosei Kagaku Kyokaishi, 32, 800 (1974).
 V. M. Negurenko and B. A. Mamedova, Deposited Doc., VINITI 185 pp (1975); Chem. Abstr., 86, 188539 (1977).
 J. Hetflejs and J. Langova, Chem. Listy, 67, 590 (1973).
 V. Sh. Feldblyum, Dimerizatsiya i Desproportsionirovanie Olefinov, 208 pp (1978); Chem. Abstr., 90, 54440 (1979).
 I. I. Sidorchuk, V. M. Negurenko, B. A. Mamendova, L. V. Fillippova, and N. K. Kholodova, Deposited Doc., VINITI 2195 (1975); Chem. Abstr., 87, 104020 (1977).
 B. A. Krentsel, E. A. Mushina, and N. A. Borisova, Rev. Inst. Fr. Pet., 32, 59 (1977).
- Fr. Pet., 32, 59 (1977).
 (29) G. P. Belov and F. S. Dyachkovskii, Dolcl. Soobshch. 304
- (1974); Zh. Khim. Abstr. 5B, 1235 (1976). (30) V. Sh. Feldblyum, Proc. Int. Congr. Catal., 4th, 1, 222 (1971).
- (31) J. K. Jolly in "Comprehensive Organometallic Chemistry", G. Wilkinson, F. G. A. Stone, and E. W. Abel, Eds.; Pergamon Press, New York, 1982, Vol. 8, p 621.
 (32) V. A. Kabanov and V. I. Smetanyuk, Sov. Sci. Rev., Sect. B,
- 83 (1980).
- (33) B. H. Johnson, U.S. Patent 3475347 (1969); Chem. Abstr., **72**, 2991 (1970).
- (34) B. H. Johnson, U.S. Patent 3642932 (1972); Chem. Abstr., 76, 99068 (1972).
- (35) K. W. Egger, Trans. Faraday Soc., 67, 2638 (1971).
 (36) R. Robinson, Chem. Age (London) 71, 623 (1956).
 (37) P. E. M. Allen and R. M. Lough, J. Chem. Soc., Faraday
- (37) F. E. M. Allen and R. M. Lough, J. Chem. Soc., Faraday Trans. 1 69, 2087 (1973).
 (38) P. E. M. Allen, J. P. Allison, J. R. Majer, and J. C. Robb, Trans. Faraday Soc., 59, 2080 (1963).
 (39) I. M. Chernikova, Thesis, All-union Scientific Research Institute for Old Fire Palvi (1977) 3.
- stitute for Olefins, Baku (1967).³
 (40) Z. S. Kalashnikova, A. T. Menyailo, and A. M. Sladkov, Tr. Nauchno-Issled. Inst. Sint. Spirtov Org. Prod., 262 (1960).
 (41) I. M. Chernikov, I. I. Pisman, and M. A. Dalin, Azerb. Khim.
- Zh., 35 (1965).
 (42) A. Y. Alan and K. H. James, British Patent 896 822 (1962); Chem. Abstr., 57, 13606 (1962).
 (43) I. M. Chernikov, I. I. Pisman, M. A. Dalin, P. K. Taktarov,
- and Yu. A. Agadzhanov, Khim. Prom-st. (Moscow), 328
- (44) H. Martin, Angew. Chem., 68, 306 (1956).
 (45) V. I. Zhukov, N. P. Shestat, M. N. Dyadyunova, L. A. Shilov, I. D. Sherlyakov, R. Kh. Denilov, and N. S. Tsvetkov, Izv. Sev.-Kavk, Nauchn. Tsentra Vyssh. Shk., Tekh. Nauki, 3, 93 (1975); Chem. Abstr., 83, 193844 (1975)
- (46) M. Farina and M. Ragazzini, Chim. Ind. (Milan), 40, 816 (1958)
- (47) C. E. H. Brown and R. Symcox, J. Polym. Sci., 34, 139 (1959).
 (48) G. Natta, L. Porri, A. Carbonaro, and G. Stoppa, Makromol.
- Chem., 77, 114 (1964).

 (49) D. H. Dawes and C. A. Winkler, J. Polym. Sci., Part A, 2,
- 3029 (1964). (50) E. M. Angelescu and S. Moldoveanu, Rev. Roum. Chim., 11, 541 (1966).
- (51) M. Takeda, K. Imura, Y. Nozawa, M. Hisatome, and M.
- Koide, J. Polym. Sci. Part C, 2, 741 (1969). (52) T. S. Dzhabiev, Dissertation (1970). 59
- H. Hirai, K. Hiraki, I. Noguchi, and S. Makishima, J. Polym. Sci., Part A, 1, 147 (1970).

- (54) G. P. Belov, T. S. Dzhabiev, F. S. Dyachkovskii, V. I. Smirnov, N. D. Karpova, Kh. A. Brikenstein, M. P. Gerasina, V. E. Kuzmin, and P. E. Matkovskii, U.S. Patent 3879485
- (1975); Chem. Abstr., 83, 27520 (1975).
 V. I. Zhukov, N. P. Shestak, G. P. Belov, M. N. Dyadyunova, L. A. Shilov, I. D. Shevlyakov, F. S. Dyachkovskii, A. G. Liakumovich, and P. A. Vernov, U.S. Patent 4101600 (1978); Chem. Abstr., 90, 86697 (1979).
- (56) E. Angelescu and I. Pirvulescu, Rev. Chim. (Bucharest), 20, 521 (1969).
- (57) P. A. Vernov, N. V. Lemaev, A. G. Liakumovich, G. P. Belov, E. V. Gutsatyuk, and V. P. Kichigin, Neftepereab. Neftekhim. (Moscow), 25 (1977); Chem. Abstr., 87, 167480 (1977).
 (58) S. Yamada and I. Ono, Bull. Jpn. Pet. Inst. 12, 160 (1970).
 (59) P. Cossee, J. Catal., 3, 80 (1964).
 (60) O. Nesver, S. Chen, and B. Mognouet, J. Catal., 41, 81.

- O. Novaro, S. Chow, and P. Magnouat, J. Catal., 41, 91 (1976)
- (61) O., Novaro, S. Chow, and P. Magnouat, J. Catal., 41, 131
- (62) G. P. Belov, T. F. Dzhabiev, and F. S. Dyachkovskii in "Symposium on the Mechanism of Hydrocarbon Reactions", F. Marta, and D. Kallo, Eds., Elsevier, Amsterdam, 1973, p
- (63) T. S. Dzhabiev, F. S. Dyachkovskii, and N. D. Karpova, Kinet. Katal., 15, 67 (1974).
 (64) G. P. Belov, T. S. Dzhabiev, and I. M. Kolesnikov, J. Mol.
- Catal., 14, 105 (1982).
- (65) R. J. Puddephatt, Comments Inorg. Chem., 2, 69 (1982).
 (66) F. N. Tebbe, G. W. Parshall, and G. S. Reddy, J. Am. Chem.
- Soc., 101, 5074 (1979). (67) P. E. Matkovaskii, L. N. Russiyan, F. S. Dyachkovskii, Kh. A. Brikenshtein, and M. P. Gerasina, Kinet. Katal., 19, 263
- (68) G. P. Belov, Kompleksn. Metalloorg. Katal. Polim. Olefinov, 123 (1977); Zh. Khim. Abstr., 15B, 1159 (1978).
 (69) G. P. Belov, F. S. Dyachkovskii, and V. I. Smirnov, Neftek-
- himiya, 18, 891 (1978); Chem. Abstr., 90, 103297 (1979).

- (70) G. P. Belov, Osnovn. Org. Sint. Neftekhim., 14 (1978); Zh. Khim. Abstr., IN6 (1979).
 (71) T. S. Dzhabiev, F. S. Dyachkovskii, and I. I. Shishkina, Izv. Akad. Nauk SSR, Ser. Khim., 1238 (1973).
 (72) T. S. Dzhabiev, F. S. Dyachkovskii, and I. A. Ishtryakov, Neftekhimiya, 14,700 (1974); Chem. Abstr., 82, 42605 (1975).
 (73) G. P. Belov, T. S. Dzhabiev, Z. I. Dzhabiev, and F. S. Dyachkovskii, Tezisay Dokl—Vses. Chuqaevskce Soveshch. Khim. Kompleksn. Soedin., 12th, 2, 201 (1975); Chem. Abstr., 85, 159010 (1976).
- Abstr., 85, 159010 (1976).

 (74) T. S. Dzhabiev, Z. M. Dzhabiev, G. P. Belov and F. S. Dy-
- (74) 1. S. Dzhablev, Z. M. Dzhablev, G. F. Belov and F. S. Dyachkovskii, Neftekhimiya, 16, 706 (1976).
 (75) G. P. Belov, V. I. Smirnov, T. I. Soloveva, and F. S. Dyachkovskii, Zh. Fiz. Khim., 51, 2132 (1977).
 (76) G. P. Belov, Z. M. Dzhabiev, and F. S. Dyachkovskii, Kompleksn. Metalloorg. Katal. Polim. Olefinov, 119 (1978); Zh. Khim. Abstr., 20B, 1174 (1978).
 (77) G. P. Belov, V. I. Smirnov, T. I. Soloveva, and F. S. Dyachkovskii, Deposited Doc. VINITI, 1478 (1977); Chem. Abstr., 90, 88645 (1979).
- 90, 86645 (1979).
- (78) (a) H. Bestian and K. Clauss, Angew. Chem., Int. Ed. Engl.,
- 2, 32 (1963); (b) *Ibid.*, 2 704 (1963). (79) S. Cesca, W. Marconi, and M. L. Santostasi, *J. Polym. Sci.*,
- Part B, 7, 547 (1969).
 (80) K. Shikata, Y. Miura, S. Nakaro, and K. Azuma, Kogyo Kagaku Zasshi, 68, 2266 (1965); Chem. Abstr., 64, 15721 (1966).
 (81) S. Datta, M. B. Fischer, and S. S. Wreford, J. Organomet.
- Chem., 188, 353 (1980).

 (82) P. C. Wailes, R. S. P. Coutts, and H. Weigold in "Organometallic Chemistry of Titanium, Zirconium ane Hafnium,"

 Academic Press, New York, 1974, p 188.
- (83) W. L. Carrick, A. G. Chaser, and J. J. Smith, J. Am. Chem. Soc., 82, 5319 (1960).
- (84) R. J. H. Clark and A. J. McAlles, J. Chem. Soc. A, 2026
- (85) D. Commereuc, Y. Chauvin, J. Gaillard, J. Leonard, and J. Andrews, Hydrocarbon Process., 63 (11), 120 (1984).
 (86) K. Ziegler, British Patent 787 438 (1957); Chem. Abstr., 52, 132 (1957).
- (87) U. M. Dzhemilev, G. A. Totstikov, S. R. Rafikov, A. G. Ibragimov, M. A. Dalin, O. S. Vostrikova, R. M. Masagutor, S. M. Maksimov, and G. E. Ivanov, USSR Patent 857 097 (1981); Chem. Abstr., 96, 6143 (1982).
 (88) Netherlands Patent 7013 193 (1971); G. Henrici-Olive and S. Olive, Adv. Polym. Sci., 15, 1 (1974).
 (89) F. N. Tohbe, U.S. Patent 3032 373 (1976); Chem. Abstr. 84
- (89) F. N. Tebbe, U.S. Patent 3 933 876 (1976); Chem. Abstr., 84, 165021 (1976).
- U. Dorf, K. Engel, and G. Erker, Angew. Chem., Int. Ed.
- (91) D. G. H. Ballard, J. Polym. Sci., 13, 2191 (1978).
 (92) S. Tanaka, Y. Nakamura, J. Hotta, T. Shimizu, and N. Uchida, Japanese Patent 7 001 441 (1970); Chem. Abstr., 72, 110750 (1970).

- (93) R. R. Schrock, U.S. Patent 3932477 (1976); Chem. Abstr., 85,
- 33190 (1976). (94) R. R. Schrock, S. J. McLain, and J. Sancho, J. Am. Chem. Soc., 101, 5451 (1979)
- (95) S. J. McLain, J. Sancho, and R. R. Schrock, J. Am. Chem. Soc., 102, 5610 (1980).
 (96) S. J. McLain and R. R. Schrock, J. Am. Chem. Soc., 100, 1315
- (1978)
- (97) J. D. Fellman, G. A. Rupprecht, and R. R. Schrock, J. Am. Chem. Soc., 101, 5099 (1979).
 (98) J. D. Fellman, R. R. Schrock, and G. A. Rupprecht, J. Am.
- Chem. Soc., 103, 5752 (1981)
- (99) E. A. Zuech, J. Polym. Sci., Polym. Chem. Ed., 10, 3665
- (100) E. A. Zuech, U.S. Patent 3 627 700 (1971); Chem. Abstr., 76, 126356 (1972)
- (101) E. A. Zuech, U.S. Patent 3 726 939 (1973); Chem. Abstr., 79, 18035 (1973)
- (102) M. L. H. Green and J. Knight, J. Chem. Soc., Dalton Trans., 311 (1974).
- (103) L. G. Wideman, U. S. Patent 3813453 (1974); Chem. Abstr.,
- 81, 106252 (1974). (104) K. Saeki and T. Arakawa, Japanese Patent 7 319 601 (1973);
- Chem. Abstr., 79, 91559 (1973). (105) V. Sh. Feldblyum, L. S. Krotova, A. I. Leshcheva, and L. D. Kononova, French Patent 1588 162 (1970); Chem. Abstr., 76, L53182 (1972)
- (106) K. Saeki, Japanese Patent 7 322 682 (1973); Chem. Abstr., 79, 145944 (1973
- (107) V. Sh. Feldblyum and N. V. Obeshchalova, Dokl. Akad. Nauk SSSR, 172, 368 (1967)
- G. Hata, Chem. Ind. (London), 223 (1965).
- L. Sun Pu, A. Yamamoto, and S. Ikeda, J. Am. Chem. Soc., (109)90, 7170 (1968)
- (110) K. Kawakami, T. Mizoroki, and A. Ozaki, Chem. Lett., 903
- (111) K. Kawakami, T. Mizoroki, and A. Ozaki, Bull. Chem. Soc. Ipn. 51, 21 (1978)
- G. Speier, Hung. J. Ind. Chem., 3, 449 (1975)
- (113) V. A. Kabanov and V. I. Smetanyuk, Macromol. Chem. Phys. Suppl., 5, 121 (1981).
- (114) K. Maruya, T. Mizoroki, and A. Ozaki, Bull. Chem. Soc. Jpn., 43, 3630 (1970)
- (115) K. Maruya, N. Ando, and A. Ozaki, Nippon Kagaku Zasshi, **91**, 1125 (1970).
- (116) C. G. P. Dixon, E. W. Duck, and D. K. Jenkins, Organomet. Chem. Synth., 1, 77 (1971).
 (117) K. Maruyama, T. Kuroki, T. Mizoroki, and A. Ozaki, Bull.
- Chem. Soc. Jpn., 44, 2002 (1971)
- (118) S. G. Abasova, B. A. Krentsel, A. I. Leshcheva, E. A. Mu-(118) S. G. Abasova, B. A. Krentsel, A. I. Leshcheva, E. A. Mushina, and V. Sh. Feldblyum, Izv. Akad. Nauk SSSR, Ser. Khim., 644 (1972).
 (119) F. K. Schmidt, V. S. Tkach, and A. V. Kalabina, Neftekhimiya, 12, 819 (1972).
 (120) K. Maruya, T. Mizoroki, and A. Ozaki, Bull. Chem. Soc. Jpn., 45, 2255 (1972).
- **15**, 2255 (1972
- (121) N. Kawata, T. Mizoroki, A. Ozaki, and M. Ohkawara, Chem. Lett., 1165 (1973)

- Lett., 1165 (1973).
 (122) N. V. Petrushanskaya, A. I. Kurapova, and V. Sh. Feldblyum, Zh, Org. Khim., 9, 2620 (1973).
 (123) N. V. Petrushanskaya, A. I. Kurapova, and V. Sh. Feldblyum, Dokl. Akad. Nauk. SSSR, 211, 606 (1973).
 (124) N. V. Petrushanskaya, A. I. Kurapova, N. M. Rodionov, and V. Sh. Feldblyum, Zh. Org. Khim., 10, 1402 (1974).
 (125) Y. Sakakisara, T. Yamasaki, M. Hikita, M. Sakai, and N. Uchino, Nippon Kagaku Kaishi, 910 (1974).
 (126) J. D. McClure and K. W. Barnett, J. Organomet. Chem., 80, 385 (1974).
- (127) T. Mizoroki, K. Maruya, and A. Ozaki, Kenkyu Hokobu-Asahi Garasu Kogyo Gijutsu Shoreikai, Kenkyu Hokobu, 23, 141 (1973)
- (128) F. K. Shmidt, V. S. Tkach, Yu. S. Levkovsku, and T. N. Sergeeva in "Katalich reaktsu Vzaidk. faze", 1974, Chapter 3, p. 675; Zh. Khim. Abstr., 5B, 1313 (1975); Chem. Abstr., 83, 131574 (2075). (1975)

- 113574 (1975).
 (129) N. V. Petrushanskaya, A. I. Kurapova, N. M. Radionova, and V. Sh. Feldblyum, Kinet. Katal., 17, 262 (1976).
 (130) E. Angelescu, T. Bisceanu, and I. V. Nicolescu, Rev. Chim. (Bucharest), 27, 745 (1976).
 (131) N. V. Petrushanskaya, A. I. Kurapova, and V. Sh. Feldblyum, Neftekhimiya, 18, 58 (1978).
 (132) V. M. Negurenko and B. A. Mamedova, Sb. Tr.—Inst. Neftekhim. Protsessov. im. Yu. G. Mamedalieva, Akad. Nauk 42 SSR 9, 196 (1977).
- Az. SSR, 9, 196 (1977). (133) N. Uchino, K. Tanaka, M. Sakai, and Y. Sakakibara, Nippon
- Kagaku Kaishi, 400 (1978); Chem. Abstr., 89, 107889 (1978). N. A. Borisova, E. A. Mushina, G. P. Karpacheva, and B. A. Krentsel, Nauchn Osn. Pererub. NeftiGaza Neftekhim. Tezisy Dokl. Vses. Konf, 156 (1977); Chem. Abstr., 92, 40971 (1980).

- (135) F. F. Kurbanova, Mater. Nauchn. Konf. Aspir. Akad. Nauk
- Az. SSR (Khim. Nauki), 1, 89 (1980). N. Uchino, K. Tanaka, M. Sakai, and Y. Sakakibara, Kyoto Kogei Seni Daigaku Senigakubu. Gakujutsu Hokoku, 9, 90 (1979); Chem. Abstr., 91, 124082 (1979).
- V. A. Kabanov, M. A. Martynova, S. K. Pluzhnov, V. I. Smetanyuk, and R. V. Chediya, Kinet. Katal., 20, 1012 (1979).
- (138) E. A. Angelescu, N. Anca, and V. Ioan, Rev. Chim. (Bucha-
- rest), 30, 523 (1979). (139) S. B. Echmaev, I. N. Ivieva, N. M. Bravaya, A. D. Pomogailo,
- and Yu. G. Borodko, Kinet. Katal., 21, 1530 (1980). (140) J. W. Andrews, P. Bonnifay, B. J. Cha, J. C. Barbier, D. Douillet, and J. Raimbault, Hydrocarbon Process., 55, 105
- K. Fischer, K. Jonas, P. Misbach, R. Stabba, and G. Wilke, Angew. Chem., Int. Ed. Engl., 12, 943 (1973).
 J. Ewers, Angew. Chem., 78, 593 (1966).
- (143) G. Wilke and B. Bogdanovic, Angew. Chem., 78, 157 (1966).
 (144) J. Chauvin, N. H. Phung, N. Geuchard, and G. Lefebvre, Bull. Soc. Chim. Fr. 3223 (1966).
 (145) Y. Sh. Feldblyum, N. V. Obeshchalova, and A. I. Leshcheva,
- Dokl. Akad. Nauk SSSR, 172, 111 (1967).

 (146) V. Sh. Feldblyum, N. V. Obeshchalova, A. I. Leshcheva, and T. I. Baranova, Neftekhimiya, 73, 379 (1967).

 (147) T. Arakawa and K. Saeki Kogyo Kagaku Zasshi, 71, 1028;
- (148) G. Wilke, Proc. R. A. Welch Foundation, Conference on Chemical Research. IX. Organometallic Compounds (1966).

 (149) N. V. Obeshcholova, V. Sh. Feldblyum, and N. M. Pash-
- chenko, Zh. Org. Khim., 4, 104 (1968). (150) O. T. Onsager, H. Wang, and U. Blindheim, Helv. Chim.
- Acta, **52**, 230 (1969).
- (151) D. Commereuc, Y. Chauvin, G. Leger, and J. Gaillard, IFP
- Communication Reference 30 089, 1982, 28 pages.

 (152) T. Kolke, K. Kawakami, K. Maruya, T. Mizoroki, and A. Ozaki, Chem. Lett., 551 (1977).

 (153) M. Tsutsui and T. Koyano, J. Polym. Sci., Part A, 1, 681
- (154) Y. Ishimura, K. Maruya, N. Nakamura, T. Mizoroki, and A. Ozaki, Chem. Lett., 657 (1981).
 (155) R. H. Grubbs and A. Miyashita, J. Am. Chem. Soc., 100, 7416
- (156) N. Uchino, K. Tanaka, M. Sakai, and Y. Sakakibara, Kyoto Kogei Seni Daigaku Senigakubu. Gakujutsu Hokoku 9, 90 (1979).
- (157) T. Mizoroki, N. Kawata, S. Hinata, K. Maruya, and A. Ozaki in "Catal. Proc. Int. Symp.", B. Delmon and G. Jannes, Eds; Elsevier, Amsterdam, 1975, p 319.
 (158) O. T. Onsager, H. Wang, and U. Blindheim, Helv. Chim.
- (158) O. T. Onsager, H. Wang, and U. Blindheim, Helv. Chim. Acta, 52, 215 (1969).
 (159) D. B. Furman, N. V. Volchkov, L. A. Makhlis, P. E. Matkovskii, F. S. Dyachkovskii, V. E. Vasserberg, and O. V. Bragin, Katalizatory Soderzhashch. Nanesen. Komplexsy Materialy Simpoz. Tashkent, 1980, Chapter 1, p 229.
 (160) T. Alderson, E. L. Jenner, and R. V. Lindsey, J. Am. Chem. Sca. 27, 5628 (1965).
- Soc., 87, 5638 (1965). (161) A. Thomas, U.S. Patent 3013066 (1961); Chem. Abstr., 57,
- 11016 (1962).
- (162) R. Cramer, J. Am. Chem. Soc., 87, 4717 (1965).
 (163) I. Okura and T. Keii, Nippon Kagaku Kaishi, 257 (1972).
- (164) I. A. Lygina, E. A. Grigoryan, and I. P. Smirenkina, *Kinet. Katal.*, 21, 1178 (1980).
 (165) N. Takahashi, I. Okura, and T. Keii, *J. Am. Chem. Soc.*, 97,
- 7489 (1975)
- (166) N. Takahashi, I. Okura, and T. Keii, J. Mol. Catal., 3, 277
- (167) P. G. Antonov, N. V. Borunova, and V. I. Anufriev, *Izv. Vyssh. Uchebn. Zaved.*, *Khim. Khim. Tekhnol.*, **22**, 952 (1979); *Chem. Abstr.*, **92**, 41220 (1980).
- (168) Y. Kusunoki, R. Katsuno, N. Hasegawa, S. Kurematsu, Y. Nagao, K. Ishii, and J. Tsutsumi, Bull. Chem. Soc. Jpn., 39, 2021 (1966).
 (169) J. T. VanGemert and P. R. Wilkinson, J. Phys. Chem., 68,
- 645 (1964).
- (170) K. Kawamoto, T. Imanaka, and S. Terganishi, Nippon Kagaku Zasshi, 91, 39 (1970); Chem. Abstr., 72, 99767 (1970).
 (171) A. D. Ketley, L. P. Fischer, A. J. Berlin, C. R. Morgan, E. H. Gorman, and T. R. Steadman, Inorg. Chem., 6, 657 (1967).
 (170) E. Carris, D. Britis, S. Dallad, Phys. Acta 11, 1200.
- (172) F. Camacho Rubio, S. Delgado Diaz, and R. Alvaro Alvareez,

- (172) F. Camacho Rubio, S. Delgado Diaz, and R. Alvaro Alvareez, Ing. Quim., 12, 83 (1980).
 (173) M. G. Barlow, M. J. Bryant, R. N. Haszeldine, and A. G. Mackie, J. Organomet. Chem., 21, 215 (1970).
 (174) T. Kitamura, K. Maruya, Y. Morooka, and A. Ozaki, Bull. Chem. Soc. Jpn., 45, 1457 (1972).
 (175) P. Pertici and G. Vitulli, Tetrahedron Lett., 1897 (1979).
 (176) Yu. N. Usov, E. D. Chekurovskaya, and N. I. Kuvshinova, Neftkhimiva, 18, 369 (1978).
 (177) E. D. Chekurovskaya, Yu. N. Heov, and N. I. Kuvshinova, 13
- (177) E. D. Chekurovskaya, Yu. N. Usov, and N. I. Kuvshinova, 13 Vses. Chunguev. Soveshch. Po Khimii Kompleks, Soedin,

- 1978, p 436; Zh. Khim. Abstr., 23B, 1205 (1978); Chem.
- Abstr., 90, 120917 (1979). (178) Yu. N. Usov, E. D. Chekurovskaya, and N. I. Kuvshinova,
- Kinet. Katal., 19, 1606 (1978). (179) Yu. N. Usov, E. D. Chekurovskaya, and N. I. Kuvshinova, Deposited Doc. SPSTL 898 KhP-D80, 1980; Chem. Abstr., **97**, 91661 (1982)
- (180) S. Ikeda, A. Ozaki, M. Okawara, T. Mizoroki, M. Uchino, H. Shirakawa, and N. Kawata, German Offen. 2412 105 (1975); Chem. Abstr., 83, 164864 (1975).
- (181) K. Ziegler, German Patent 94 642 (1957); Chem. Abstr., 54, 967 (1960)
- (182) K. Ziegler, Belgium Patent 610 302 (1962); Chem. Abstr., 57, 13606 (1982).
- (183) W. E. Shewbart, S. A. Sims, B. D. Head, and G. E. Shite, U.S.
- Patent 4 314 090 (1980); Chem. Abstr., 96, 103613 (1982). (184) R. K. Joseph and M. A. Leon, U.S. Patent 3 168 590 (1965); Chem. Abstr., **62**, 9006 (1965)
- (185) I. D. Shevlayakov, F. S. Dyachkovskii, A. G. Liakumovich, P. A. Vernov, Yu. M. Sivakov, V. I. Zhukov, N. P. Shestak, G. P. Belov, M. N. Dyadyunov, and L. A. Shilov, French Demande, 2341540 (1977); Chem. Abstr., 89, 179526 (1978).
- (186) K. Ziegler, German Offen. 964 410 (1957); Chem. Abstr., 53,
- 14054 (1959). (187) A. E. Fowler, G. E. White, and S. A. Sims, U.S. Patent
- 4380684 (1983); Chem. Abstr., 99, 6223 (1983). (188) G. Natta, J. Polym. Sci., 34, 151 (1959). (189) M. P. Gerasina and Kh. A. Brikenshtein, Osnovn. Org. Sint. Neftikhim., 15 (1978); Chem. Abstr., 91, 174751 (1979). (190) V. I. Zhukov, N. P. Shestak, V. G. Shumovskii, L. A. Shilov,

- V. I. Zhukov, N. P. Shestak, V. G. Shumovskii, L. A. Shilov, A. P. Litvin, and I. D. Shevlyakov, USSR Patent 600 132 (1978); Chem. Abstr., 88, 170761 (1978).
 S. Jiri and J. Kvetusi, Czechoslovakian Patent 189984 (1983); Chem. Abstr., 99, 70179 (1983).
 G. P. Belov, V. I. Zhukov, N. P. Shestak, A. A. Brikenshtein, M. P. Gerasina, F. S. Dyachkovskii, and L. A. Shilov, Nauchn. Osn. Pererub Nefti Gaza Neftekhim., Tezisy Dokl. Vess Konf. 203 (1977). Chem. Abstr. 92, 50961 (1980).
- Vses Konf., 203 (1977); Chem. Abstr., 92, 59261 (1980).
 (193) S. Izawa, S. Yamada, and T. Komari, Japanese Patent 7 201 444 (1972); Chem. Abstr., 76, 85363 (1972).
 (194) D. L. Beach and Y. V. Kissin, J. Polym. Sci., Polym. Chem.
- (195) P. E. Matkovskii, F. S. Dyachkovskii, L. N. Russiyan, V. D. Litvinova, V. N. Belova, G. P. Stravtseva, and Kh. A. Brikenshtein, Neftekhimiya, 22, 317 (1982); Chem. Abstr., 97, 144267 (1982).
- 144267 (1982).
 (196) P. E. Matkovskii, L. N. Russiyan, Kh. A. Brikenshtein, M. P. Gerasina, a. D. Pomogailo, and N. M. Chirkov, USSR Patent 496 258 (1975); Chem. Abstr., 84, 73618 (1976).
 (197) J. Vybihal, Czechoslovakian Patent 179 726 (1979); Chem. Abstr., 92, 129603 (1980).
 (198) J. Vybihal, Chem. Prum., 31, 640 (1981).
 (199) J. Vybihal, Czechoslovakian Patent 179 183 (1979); Chem. Abstr., 92, 77131 (1980).
 (200) V. I. Zhukov, N. P. Shestek, G. P. Belov, M. N. Dvedyupova

- Abstr., 92, 77131 (1980).
 (200) V. I. Zhukov, N. P. Shestak, G. P. Belov, M. N. Dyadyunova, L. A. Shilov, I. D. Shevlyakov, F. S. Dyachkovskii, A. G. Liakumovich, P. A. Vernov, and Yu. M. Sivakov, USSR Patent 681 032 (1979); Chem. Abstr., 92, 75808 (1980).
 (201) G. P. Belov, T. S. Dzhabiev, F. S. Dyachkovskii, V. I. Smirnov, and N. M. Chirkov, USSR Patent 485 101 (1975); Chem. Abstr., 84, 44934 (1976).
 (202) V. I. Zhukov, G. P. Belov, Y. Ya. Ivolyin, N. P. Shestak, N. V. Kartusheva, and G. Ya. Yushinu, Neftekhimiya, 22, 598 (1982); Chem. Abstr., 98, 54516 (1983).
 (203) G. P. Belov, T. S. Dzhabiev, and I. M. Kolesnikov, J. Mol. Catal., 14, 105 (1982).

- Catal., 14, 105 (1982).
- (204) T. E. C. Knee, Canadian Patent 653 326 (1962).
 (205) K. Azuma and K. Yomo, Japanese Patent 6904 961 (1969); Chem. Abstr., 71, 101270 (1969).
- Japanese Patent 6 904 962 (1969).6
- (207) K. Azuma, Japanese Patent 69 551 601 (1969).⁵⁸
 (208) G. P. Pez, J. Chem. Soc., Chem. Commun., 560 (1977).
 (209) K. Ziegler, British Patent 787 438 (1957); Chem. Abstr., 52, 19107 (1958).
- (210) Italian Patent 586 452 (1957); Chem. Abstr., 56, 7608 (1962). (211) M. Izawa, S. Yamada, and Y. Ono, German Patent 1803434
- 1969); Chem. Abstr., 71, 80628 (1969). (212) K. Ziegler and M. Heinz, U.S. Patent 2943125 (1960); Chem. Abstr., 54, 25746 (1960)
- (213) Japanese Patent 82 169 430 (1982); Chem. Abstr., 98, 88801 (1983).
- (214) Japanese Kokai 77 113 903 (1977); Chem. Abstr., 88, 120589 (1978).
- G. P. Belov, T. S. Dzhabiev, V. E. Kuzmin, F. S. Dyachkovskii, M. P. Gerasina, and Kh. A. Brikenstein, USSR Patent 485 102 (1975); Chem. Abstr., 84, 44933 (1976).
- (216) J. Vybihal, Czechoslovakian Patent 179 248 (1979); Chem. Abstr., 92, 110508 (1980).
 (217) V. I. Zhukov and P. F. Ivanenko, USSR Patent 495 451
- (1975); Chem. Abstr., 83, 79936 (1975).

- (218) S. Yamada, I. Ono, H. Abe, N. Kunihiro, and K. Tago, German Offen 2026 246 (1971); Chem. Abstr., 74, 87315 (1971).
 (219) V. I. Shukov, N. P. Shestak, G. P. Belov, M. N. Dyadyunova, L. A. Shilov, I. D. Shevlyakov, F. S. Dyachkovskii, A. G. Lyakumovich, P. A. Vernov, and Yu. M. Sivakov, German Offen 2707 830 (1977); Chem. Abstr., 87, 200761 (1977).
 (220) G. P. Belov, T. S. Dzhabiev, F. S. Dyachkovskii, V. I. Smirnov, N. D. Karpova, K. A. Brikenstein, N. P. Gerasina, V. E. Kuzmin, and P. E. Matkovskii, U.S. Patent 3911042 (1975); Chem. Abstr., 84, 74874 (1976).
- Kuzmin, and F. E. Matkovskii, O.S. Patent 3911042 (1975); Chem. Abstr., 84, 74874 (1976).
 (221) G. P. Belov, T. S. Dzhabiev, F. S. Dyatshkovskii, V. I. Smirnov, N. D. Karpova, C. A. Brikenshtein, M. P. Gerasina, V. E. Kuzmin, and P. E. Matkovskii, German Patent 2462771 (1980); Chem. Abstr., 94, 66412 (1981).
 (222) G. P. Belov, T. S. Dzhabiev, F. S. Dyachkovskii, V. I. Smirnov, N. D. Karpova, K. A. Brikenstein, M. P. Grazina, V. E.
- nov, N. D. Karpova, K. A. Brikenstein, M. P. Gerasina, V. E. Kuzmin, and P. E. Matkovskii, U.S. Patent 3 969 429 (1976) Chem. Abstr., 85, 143775 (1976).

 (223) I. A. Campbell, British Patent 1 447 812 (1976); Chem. Abstr.,
- 87, 6629 (1977
- (224) G. P. Belov, N. D. Karpova, T. S. Dzhabiev, K. A. Brikenshtein, F. S. Dyachkovskii, M. P. Gerasina, V. I. Smirnov, V. E. Kuzmin, and P. E. Matkovskii, French Demande 2274<<ntc583 (1976); Chem. Abstr., 85, 78607 (1976)
- W. Marconi and S. Cesca, German Offen 2022658 (1970); Chem. Abstr., 74, 41869 (1971)
- (226) British Patent 1447811 (1976); Chem. Abstr., 86, 90558 (1977).
- (227) K. Otsu and Y. Iawama, Japanese Patent 7 238 402 (1972); Chem. Abstr., 78, 15478 (1973).
- Belgium Patent 634 232 (1963); Chem. Abstr., 61, 4211 (1964). S. Izawa, S. Yamada, and N. Kunimoto, Japanese Patent
- (229)
- 7 143 366 (1971); Chem. Abstr., 76, 45693 (1972).
 (230) V. E. Nevzorov, G. P. Belov, V. F. Sopin, E. V. Kuznetsov, and O. L. Nevzorova, USSR Patent 739 044 (1976); Chem. <u> Abstr., **93**,</u> 185724 (1980).
- (231) G. Hata, Japanese Patent 6 902 203 (1969); Chem. Abstr., 70, 114570 (1969)
- (232) W. A. Butte, Jr., U.S. Patent 3542896 (1970); Chem. Abstr., 4, 87307 (1971)
- (233) W. A. Butte, Jr., U.S. Patent 3542899 (1970); Chem. Abstr., **74**, 87313 (1971)
- (234) R. E. Reusser, U.S. Patent 3364278 (1968); Chem. Abstr., 68, 49016 (1968).
- (235) I. V. Nicolescu, A. Engelescu, E. Angelescu, and S. Nenciu-
- lescu, Rev. Chim. (Bucharest). 30, 411 (1979). (236) D. R. Bwrnham, U.S. Patent 4032590 (1977).
- (237) H. Takeshi and M. Akihisa, Japanese Patent 7 103 162 (1971); Chem. Abstr., 74, 124758 (1971).
- (238) Japanese Patent 8 181 524 (1981); Chem. Abstr., 95, 168512
- (239) British Patent 1 058 680 (1963).⁶
 (240) N. V. Petrushanskaya and V. Sh. Feldblyum, USSR Patent 290 764 (1971); Chem. Abstr., 74, 140893 (1971). (241) British Patent 1146 190 (1965); G. Wilke, Belgium Patent
- 651 596 (1965); Chem. Abstr., 64, 9928 (1966). (242) Netherlands Patent 6612 735 (1967); Chem. Abstr., 67, 53608
- V. Sh. Feldblyum, N. V. Petrushanskaya, A. I. Kurapova, E. A. Mushina, B. A. Krentsel, and N. A. Borisova, USSR Pat-
- ent 686 753 (1979); Chem. Abstr., 92, 41304 (1980).
 (244) B. Bogdanovic and G. Wilke, Proceedings of VIIth World Petroleum Congress, Mexico, 1968, Vol. 5, p 351.
 (245) B. Bogdanovic and G. Wilke, Brennstr.-Chem., 49, 323
- (1968)
- G. Ahymes, A. Grobler, A. Simon, I. Kada, and I. Andor, Magy. Kem. Lapja, 20, 570 (1965); Chem. Abstr., 64, 6471
- (247) N. A. Borisova, G. P. Karpacheva, E. A. Mushina, and B. A (247) N. A. Borisova, G. P. Karpacheva, E. A. Mushina, and B. A. Krentsel, Izv. Akad. Nauk SSSR, Ser. Khim., 9, 2131 (1978); Bull. Acad. Sci. USSR, Div. Chem. Sci., 1882 (1978).
 (248) D. B. Furman, V. E. Vasserberg, and O. V. Bragin, Izv. Akad. Nauk SSSR, Ser. Khim., 1962 (1981).
 (249) J. D. McClure and K. W. Barnett, U.S. Patent 3 424 816 (1969); Chem. Abstr., 70, 68871 (1969).
 (250) K. W. Barnett and J. H. Raley, U.S. Patent 3 532 765 (1970); Chem. Abstr., 73, 120047 (1970).
 (251) K. W. Barnett and P. W. Glockner, German Offen 200 102 (1969); Chem. Abstr., 73, 77852 (1970).
 (252) French Patent 1 497 673 (1965).

- French Patent 1497673 (1965)
- N. Bergem, U. Blindheim, O. T. Onsager, and H. Wang French Patent 1519181 (1968); Chem. Abstr., 71, 49204 (1969).
- (254)A. Angelescu and E. Angelescu, Rev. Chim. (Bucharest), 32, 653 (1981).
- I. V. Nicolescu, E. Angelescu, and A. Angelescu, Rev. Chim.
- (Bucharest), 33, 137 (1982). E. Angelescu, A. Angelescu, and L. N. Nicolescu, Rev. Chim. (Bucharest), 30, 523 (1979).
- (257) J. Ewers, Erdol Kohle, Erdgas., Petrochemie, 763 (1968).

- (258) S. Izawa, S. Yamada, and N. Kunimoto Japanese Patent
- 7 222 205 (1972); Chem. Abstr., 77, 87809 (1972).
 (259) H. Kropper and K. Schloamer, German Patent 1178419 (1961); Chem. Abstr., 61, 15973 (1964).
 (260) Netherland Patent Application 7016039 (1971); Chem. Abstr., 75, 110729 (1971).
- (261) E. Angelescu, A. Angelescu, S. Nenciulescu, and I. V. Nicolescu, Rev. Chim. (Bucharest), 32, 559 (1981).
- (262) I. N. Bocharov, A. A. Antonov, V. A. Kabanov, M. A. Martinova, S. K. Pulzhnov and V. I. Smetanyuk, Belgium Patent 852 473 (1977); Chem. Abstr., 88, 169569 (1978).
- (263) Japanese Patent 7 509 592 (1975); Chem. Abstr., 84, 106354
- (264) D. R. Burnham, German Offen 2538142 (1976); Chem. Abstr., 85, 124611 (1976).
- (265) A. A. Antonov, V. A. Kabanov, M. A. Martinova, N. S. Nametkin, S. K. Pluzhnov, and V. I. Smetanyuk, Belgium Patent
- 852 472 (1977); Chem. Abstr., 88, 19005 (1978). V. A. Kabanov, M. A. Martinova, S. K. Pluzhnov, and V. I. Smetanyuk Belgium Patent 852471 (1977); Chem. Abstr., 88, 190054 (1978)
- (267) L. Cannell, E. F. Magoon, and J. H. Raley, U.S. Patent 3424815 (1967); Chem. Abstr., 70, 77279 (1969).
 (268) G. A. Toltikov, U. M. Dzhamilev, A. A. Antonov, G. I. Rutman, S. S. Srednev, and A. G. Liakumovitch, USSR Patent 539 860 (1976); Chem. Abstr., 87, 5358 (1977).
- (269) Netherland Patent 6 809 282 (1967).⁵
 (270) N. Bergem, U. Blidheim, O. T. Onsager, and H. Wang, French Patent 1519 181 (1966); Chem. Abstr., 71, 49204
- (271) R. F. Mason, U.S. Patent 3676523 (1971); Chem. Abstr., 77, 100710 (1972)
- (272) R. F. Mason, U.S. Patent 3 686 351 (1972); Chem. Abstr., 77. 151422 (1972)
- (273) R. S. Bauer, H. Chung, P. W. Glockner, and W. Keim, U.S. Patent 3 644 563 (1972).
 (274) R. F. Mason, U.S. Patent 3 737 475 (1973).
- (275) T. Arakawa and K. Sakeki, Japanese Patent 7 222 208 (1972);
- (276) V. A. Kabanov, V. I. Smetanyak, S. K. Pluzhnov, M. A. Martynova, R. V. Chediya, A. I. Prudnikov, and O. P. Komarova, Deposited Doc. VINITI, 2292 (1980); Chem. Abstr., **95**, 80000 (1981)
- (277) K. Maruya, K. Nishio, N. Kawata, Y. Nakamura, T. Mizo-roki, and A. Ozaki, Nippon Kagaku Kaishi, 1385 (1973).
- K. Maruya, Bull. Chem. Soc. Jpn., 56, 818 (1983).
 S. Ozaki, T. Mizorogi, and K. Marutani, Japanese Patent 7405516 (1974); Chem. Abstr., 82, 111550 (1975).
- (280) French Patent 1547921 (1966); Chem. Abstr., 71, 50646

- Belgium Patent 707 477 (1966).⁶ T. H. Draguez, R. E. G. Emmanuel, M. Van Tongelen, and (282)H. R. Debus, German Offen 2410851 (1974); Chem. Abstr., **82,** 3739 (1975).
- T. H. Draguez, R. E. G. Emmanuel, D. Van Mercel, and R. Henri, French Demande 2 220 493 (1974); Chem. Abstr., 82, 55269 (1975)
- (284) W. Keim and F. H. Kowaldt, Erdol Kohle, Erdgas, Petrochem., 78, 453 (1978).
 (285) V. Sh. Feldblyum, T. I. Baranova, N. V. Petrushanskaya, A. I. Kurapova, A. I. Leshcheva, A. A. Surovtsev, I. M. Galperin, N. I. Gavrilova, and E. D. Tkachenko, USSR Patent 382 598
- (1973); Chem. Abstr., 79, 65770 (1973). C. E. Smith, E. L. Czenkusch, and G. C. Bailey, U.S. Patent Application, B428103 (1976); Chem. Abstr., 84, 150171
- (287) E. A. Zuech, U.S. Patent 3 485 381 (1969); Chem. Abstr., 72, 99989 (1970).
- (288)French Patent 1576134 (1969); Chem. Abstr., 72, 78358
- N. Kawata, T. Mizoroki, and A. Ozaki, J. Mol. Catal., 1, 275 (1975/1976).
- N. Bergem, U. Blindheim, O. T. Onsager, and H. Wang South African Patent 6705408 (1968); Chem. Abstr., 70, 87132 (1969); French Patent 1537550 (1966)
- (291) D. K. Jenkins and C. G. P. Dixon, U.S. Patent 3641176 (1972); French Patent 1599774; Chem. Abstr., 75, 35368
- (292) H. E. Dunn, U.S. Patent 3644218 (1972); Chem. Abstr., 77,
- 61249 (1972). (293) D. B. Furman, N. V. Volchkov, L. A. Makhlis, P. E. Matkovskii, G. P. Belov, V. E. Vasserberg, and O. V. Bragin, *Izv. Akad. Nauk SSSR*, Ser. Khim., 573 (1983); Chem. Abstr., 98, 197552 (1983)
- (294) N. Gene and D. L. Harold, U.S. Patent 2969408 (1955);
- Chem. Abstr., 55, 16009 (1961).

 J. S. Yoo, U.S. Patent 3992470 (1976); Chem. Abstr., 86, 55956 (1977).
- D. B. Furman, L. A. Makhlis, N. V. Volchkov, A. V. Preobrazhenskii, O. V. Bragin, V. E. Vasserberg, P. E. Matkovskii, (296)

- G. P. Belov, F. S. Dyachkovskii, USSR Patent 981 307 (1981); Chem. Abstr., 98, 143993 (1983). (297) Netherland Patent 6 810 848 (1967).
- (298) H. E. Dunn, U.S. Patent 3 558 738 (1971); Chem. Abstr., 74, 87308 (1971).
- (299) Z. G. Zulfugarov, E. G. Ismailov, S. I. Akhundova, L. Sh. Zulfugarova, and P. S. Mamedova, USSR Patent 950 706

- (1982); Chem. Abstr., 98, 34212 (1983).
 (300) British Patent 1124123 (1965).
 (301) O. T. Onsager, H. Wang, and U. Blindheim, Helv. Chim. Acta, 52, 107 (1969).
 (302) O. T. Onsager, H. Wang, and U. Blindheim, Helv. Chim. Acta, 52, 196 (1969); Chem. Abstr., 70, 57048 (1969).
 (303) French Patent 1 535 550 (1966).
 (304) Nithorland Patent 6 501 770 (1966). Chem. Abstr., 67, 2738.
- (304) Netherland Patent 6 601 770 (1966); Chem. Abstr., 67, 2738
- N. Bergem, U. Blindheim, O. T. Onsager, and H. Wang, South African Patent 6404671 (1967); Chem. Abstr., 70, 68530 (1969).
- (306) R. G. Komoto, U.S. Patent 4069 273 (1978); Chem. Abstr., 88, 20591 (1978).
- (307) H. Vanzwet, S. R. Bauer, and W. Keim, German Offen 2062 293 (1971); Chem. Abstr., 75, 98942 (1971).
 (308) H. Van Zwet, R. S. Baner, and W. Keim U.S. Patent 3644 564
- (309) F. F. Farley, U.S. Patent 3647 906 (1970); Chem. Abstr., 76, 112643 (1972).
- (310) M. Penckert, and W. Keim, J. Mol. Catal., 22, 289 (1984); Chem. Abstr., 100, 191297 (1984).
 (311) W. Keim, Ann. N. Y. Acad. Sci., 191 (1983).
 (312) M. Peuckert, W. Keim, S. Strop, and R. S. Weber, J. Mol.
- Catal., 20, 115 (1983).

 (313) W. Keim, F. H. Kowaldt, R. Goddard, and C. Kruger, Angew.
- Chem., 90, 493 (1978).
- (314) Netherland Patent Application 7016037 (1971); Chem. Abstr., 75, 110727 (1971).
- Netherland Patent 6 706 533 (1966).6
- (316) British Patent 1158211 (1969); Chem. Abstr., 72, 21310
- V. Sh. Feldblyum, A. I. Leshcheva, and N. V. Obeshchalova, Zh. Org. Khim., 6, 213 (1970); Chem. Abstr., 72, 121953
- (318) V. Sh. Feldblyum, A. I. Leshcheva, and N. V. Petrushanskaya, Zh. Org. Khim., 6, 2408 (1970); Chem. Abstr., 74, 63682
- V. Sh. Feldblyum, N. V. Obeshchalova, A. I. Leshcheva, L. D. Kononova, and L. S. Krotova, British Patent 1164882 (1969); Chem. Abstr., 72, 2994 (1970).
 I. I. Pisman, Khim. Prom. (Moscow), 43, 328 (1967).
- (321) I. M. Chernikova, I. I. Pisman and M. A. Dalin, Azerb. Khim. Zh., **35** (1965); Chem. Abstr., **64**, 19385 (1966).
- (322) I. I. Pisman, I. M. Chernikova, and M. A. Dalin, Azerb. Khim. Zh., 73 (1968); Chem. Abstr., 69, 105782 (1968).
 (323) French Patent 1385503 (1965); Chem. Abstr. 62, 14496
- (324) V. Sh. Feldblyum, A. I. Leshcheva, N. V. Petrushanskaya, B. A. Grigorovich, A. I. Zhukova, A. A. Surovtsev, O. V. Bogdanova, L. D. Kononova, and T. N. Barsukova, USSR Patent 290 706 (1972); Chem. Abstr., 78, 147319 (1973).
 (325) V. Sh. Feldblyum, N. V. Obeshchalova, A. I. Lescheva, and L. D. Kononova, German Offen 1618 738 (1974); Chem. Abstr., 81, 13077 (1974).
 (326) W. Schulz, H. Miy, E. Krungs, P. W. Wilcke, J. Reibeig, H.
- W, Schulz, H. Mix, E. Krunas, P. W. Wilcke, J. Reihsig, H. Fuhrmann, and I. Grassert, German Offen 2252856 (1971);
- Chem. Abstr., 78, 41869 (1973).
 Y. Yagi, A. Kobayashi, and I. Hirata, Japanese Patent 7334564 (1973); Chem. Abstr., 81, 14036 (1974).
 G. Desgradchamps, H. Hemmer, and M. Haurie, French Patent 2070554 (1971); Chem. Abstr., 77, 4840 (1972).
 H. Lehmkuhl, C. Naydowski, F. Danowski, M. Bellenbaum, B. Bonn, A. Buffinke, G. Schreth, R. Mirnett, and S. Bonn, A. Buffinke, R. Mirnett, and S. Bonn, A. Buffinke, R. Mirnett, and R. Bonn, A. Buffinke, R. M
- R. Benn, A. Rufinska, G. Schroth, R. Mynott, and S. Pasynkiewicz, Chem. Ber., 117, 3231 (1984); Chem. Abstr., 102, 24821 (1985).
- (330) K. Ziegler and H. Martin, German Offen 1 039 055 (1958);
 Chem. Abstr., 54, 25992 (1960).
 (331) Japanese Patent 58 201 729 (1983); Chem. Abstr., 100, 174258
- (1984)
- C. J. Attridge, E. Jones, A. J. P. Pioli, and P. J. Wilkinson, German Offen 2219048 (1973); Chem. Abstr., 78, 135609
- T. O. Mitchell and D. D. Whitehurst, U.S. Patent 3980583 (1974); Chem. Abstr., 85, 149658 (1976). R. Cramer, Acc. Chem. Res., 1, 186 (1968)
- (335)French Patent 1521991 (1966); Chem. Abstr., 70, 114572
- German Patent 1 193 934 (1957).6
- A. D. Ketley, French Patent 1 499 833 (1967); Chem. Abstr., (337)**69**, 76596 (1968).
- (338)French Patent, 1521991 (1966); Chem. Abstr., 70, 114572 (1969).

- (339) N. V. Borunova, V. M. Ignatov, A. F. Lunin, L. Kh. Friedlin, and Jen-Chen, Jr., USSR Patent 650 983 (1979); Chem. Abstr., 90, 186337 (1979).
 (340) V. M. Ignatov, N. V. Borunova, C. Ir. Dzen, A. F. Lunin, and L. Kh. Freidlin, Neftekhimiya, 22, 749 (1982); Chem. Abstr., 125208 (1982).
- 98, 125333 (1983)
- (341) British Patent 887 362 (1952); Chem. Abstr., 58, 3521 (1963).
- (342) U.S. Patent 3 361 840 (1963).⁸ (343) S. K. Harvey, U.S. Patent 3 354 236 (1967); Chem. Abstr., 68, 21491 (1968)
- (344) N. V. Maatschappij, Netherland Patent 294637 (1965); Chem. Abstr., 63, 14698 (1965).
 (345) F. K. Shmidt, V. S. Tkach, L. V. Micronova, N. D. Malakhova, "Mekhanizm Katalit. Reaktsii. Materialy 3 Vses 80017, Nova, "Mekhanizm Katalit. Reaktsii. Materialy 3 Vses 80017, Nova, "Mekhanizm Katalit. Reaktsii. Materialy 3 Vses 80017, Nova 1988, Nova Novosibirsk, 1982, Chapter 2, p 156; Chem. Abstr., 98, 88747 (1983).
- (346) S. Hattori, H. Munakat, K. Tatsuoka, and T. Shimizu, German Offen 2 234 922 (1974); Chem. Abstr., 80, 132759 (1974).
- (347) R. R. Schrock, J. Sancho, and S. McLain, Pure Appl. Chem., 52, 729 (1980).
- (348) S. J. McLain and R. R. Schrock, J. Am. Chem. Soc., 100, 1315 (1978)
- (349) L. G. Wideman, H. R. Menapace, and N. A. Meily, J. Catal. 43, 371 (1976)
- (350) I. M. Galperin, V. Sh. Feldblyum, and N. V. Petrushanskaya, Prom. Sin. Kauch. Nauch. Tekh. Sh., 1 (1971); Chem. Abstr., 78, 15405 (1973)
- J. Andrews and P. Bonnifay, ACS Symp. Ser., No. 55, 328 (351)
- Y. Matsumiya, Sekiyu to Sekiyu Kagaku, 13, 76 (1969). V. V. Pogozhilskii, T. G. Vaistub, T. M. Tarasova, Yu. N. Usov, and M. L. Khidekel, Dokl. Soobshch. Mendleevsk (353)
- Sezd. Obsch. Prikl. Khim., 2, 303 (1975); Chem. Abstr., 88,
- (354) N. D. Malakhova, V. S. Tkach, and F. K. Smidt, Osnovn. Org. Sint. Neftekhim., 14 (1977); Zh. Khim. Abstr., 15B, 1322
- Sint. Neftekhim., 14 (1977); Zh. Khim. Abstr., 15B, 1322 (1978); Chem. Abstr., 89, 214819 (1978).
 (355) P. Arnand, Ind. Chim. Belge., 33, 1101 (1968).
 (356) V. S. Tkach, F. K. Shmidt, I. D. Shevchenko, Katal. Prevrashch. Uglevodorodov, 168 (1976); Zh. Khim. Abstr., 15B, 1211 (1977); Chem. Abstr., 89, 196882 (1978).
 (357) Yu. A. Agadzhanov, P. I. Markosov, and A. A. Lutsenko, Neftekhim. Sint., 61 (1976); Zh. Khim. Abstr., 7N13 (1977); Chem. Abstr., 87, 84415 (1977).
 (358) N. N. Korneev, A. F. Popov and B. A. Krentsel, "Complex Organometallic Catalysts"; Halsted Press: New York, 1971; p. 151

- (359) K. J. William, U.S. Patent 3009 972 (1959); Chem. Abstr., 56, 8559 (1962).
- K. Ziegler, Liebigs Ann. Chem., 629, 121 (1960).
 V. Annhorn and K. Fresh, Chem. Eng. Prog., 57, 43 (1961).
 C. Baas and J. Vlugtar, Brennst-Chem., 45, 295 (1964).
- (363) R. Landan, R. Simon, and G. Schaffel, Chim. Ind. (Milan) 90,
- G. N. Abaev, T. G. Kovaleva, G. A. Mikhailovskii, J. M. Galperin, and D. V. Lavrov, Khim. Prom. (Moscow), 47, 97
- (1971); Chem. Abstr., 74, 124592 (1971). (365) F. K. Shmidt, V. S. Tkach, and T. N. Sergeeva, Katal. Prevrashch. Uglevodorodov, 175 (1974); Zh. Khim. Abstr.,
- 18B, 1084 (1976); Chem. Abstr., 86, 16002 (1977). C. J. Baas and J. C. Valugter, Brennst.-Chemie, 45, 258 (366)
- (367)J. Baas and J. C. Valugter, Brennst.-Chemie, 45, 295
- (1964)(368) C. J. Baas and J. C. Valugter, Brennst.-Chemie, 45, 321
- (1964).(369) K. Ziegler, British Patent 775 384 (1957); Chem. Abstr., 52, 12893 (1958)
- (370) C. J. Baas, "De Syntheses Van Isopreen Uit Propen", Delft,

- 1963.
 (371) V. Sh. Feldblyum, L. D. Myasnikova, A. M. Kutin, S. I. Kryukov, and M. I. Farberov, Neftekhimiya, 5, 493 (1965).
 (372) S. I. Kryukov and M. I. Farberov, Zh. Prikl. Khim. (Leningrad), 35, 2319 (1962).
 (373) Chem. Eng. News, 41, 1 (1963).
 (374) S. Izawa, S. Yamada, and N. Kynimoto, Japanese Patent 7 249 564 (1972); Chem. Abstr., 78, 147312 (1973).
 (375) A. M. Aladyshev, D. M. Lisitsyn, and F. S. Dyachkovskii, Vysokomol. Soedin., Ser. A, 24, 377 (1982); Chem. Abstr., 96, 163261 (1982). 163261 (1982).
- (376) J. F. Motier and J. S. Yoo, U.S. Patent 4026 822 (1977);
 Chem. Abstr., 87, 29709 (1977).
 (377) R. R. Schrock, U.S. Patent 4231 947 (1980); Chem. Abstr., 95,
- 25272 (1981).
- 25272 (1981).
 (378) S. J. Mclain, C. D. Wood, and R. R. Schrock, J. Am. Chem. Soc., 101, 4558 (1979).
 (379) H. R. Menapace, N. A. Maly, J. L. Wany, and L. G. Wideman, Prepr., Div. Pet. Chem., Am. Chem. Soc., 19, 150 (1974).
 (380) M. Brown, H. R. Menapace, and N. A. Maly, U.S. Patent 3897512 (1975); Chem. Abstr., 83, 147105 (1975).

- (381) G. S. Benner, H. R. Menapace, and N. A. Maly, German (361) G. S. Benner, H. R. Menapace, and N. A. Maly, German Offen 2 306 435 (1973); Chem. Abstr., 79, 136458 (1973).
 (382) N. A. Maly, H. R. Menapace, and G. S. Benner, German Offen 2 306 433 (1973); Chem. Abstr., 79, 145942 (1973).
 (383) N. A. Maly, H. R. Menapace, and G. S. Benner, German Offen 2 306 434 (1973); Chem. Abstr., 80, 14525 (1974).
 (384) V. Sh. Feldblyum, N. V. Petrushanskaya, A. I. Leshcheva, and T. I. Baranova, Th. Org. Khim. 10, 2025 (1974).

- v. S. Tkach, F. K. Shmidt, T. N. Sergeeva, and N. D. Malakhova, Neftekhimiya, 15, 703 (1975); Chem. Abstr., 84, 30297 (1976).

- (386) E. H. Drew and A. H. Neal, British Patent 1 167 289 (1969); Chem. Abstr., 72, 2992 (1970).
 (387) J. R. Jones, J. Chem. Soc. C, 1117 (1971).
 (388) G. Speir, J. Organomet. Chem., 97, 109 (1975).
 (389) G. Speier and L. Marko, Proc. Int. Conf. Coord. Chem., 13th, II, 27 (1970).
- (390) V. S. Tkach, F. K. Shmidt, and V. V. Saraev, Katal. Prevrashch. Ugelevodorodov, 141 (1976); Chem. Abstr., 88, 6255
- (391) F. K. Shmidt, V. S. Tkach, A. V. Kalabina, and V. Saraev, Rol Koord. V. Katal., 159 (1976); Chem. Abstr., 86, 188730
- (392) F. K. Shmidt, V. S. Tkach, A. V. Kalabina, and L. Y. Mironova, Katal. Prevrach. Uglevodorodov, 159 (1976); Chem.
- 10va, Natal. Frevrach. Oglevodorodov, 159 (1976); Chem. Abstr., 86, 188730 (1977).

 (393) F. Hojabri, J. Appl. Chem. Biotechnol., 21, 90 (1971).

 (394) Kh. LAreshidze, V. A. Kabunov, V. I. Smatunyuk, and R. V. Chediya, Soobshch. Akad: Nauk Gruz. SSR, 101, 589 (1981); Chem. Abstr., 95, 61348 (1981).
- J. W. Andrews, Hydrocarbon Process., 61, 110 (1982). (395)
- Y. Chauvin, J. F. Gaillard, Q. D. Yu, and J. W. Andrews, Nuova Chim., **50**, 79 (1974).
- (397) Japanese Patent 57 167 932 (1982); Chem. Abstr., 98, 88802
- (398) M. Taniewski and H. Momczyk, React. Kinet. Catal. Lett., 27 (1977).
- (399) F. K. Shmidt, V. S. Tkach, L. V. Mironova, and A. V. Kalabina, "Katalitich, reaktsiin Zhidk. faze", Chapter 3, 673
- (1974); Chem. Abstr., 83, 178000 (1975).
 (400) F. K. Shmidt, V. S. Tkach, and A. V. Kalabina, Neftekhimiya, 12, 76 (1972); Chem. Abstr., 76, 139872 (1972).
 (401) Y. Sakakibara, T. Tagano, M. Sakai and N. Uchino, Bull.
- (401) Y. Sakakidara, T. Tagano, M. Sakai and N. Ochino, Butt. Inst. Chem. Res., Kyoto Univ., 50, 375 (1972).
 (402) B. Bogdanovic, B. Spliethoff, and G. Wilke, Angew. Chem., Int. Ed. Engl., 19, 622 (1980); Angew. Chem., 92, 633 (1980).
 (403) S. G. Abasova, E. I. Mushina, L. S. Muraveva, B. A. Krenstsel, and V. Sh. Feldblyum, Neftekhimiya, 13, 46 (1973).
 (404) S. S. Zhukovskii, I. I. Nechaeva, B. M. Fedorov, A. M. Taber, W. E. Vergeberg, Kytalitaeva, Sodovskieh, Nevernal V. E. Vergeberg, Nevernal V. E. Vergeberg, V. Vergeberg, V. Vergeberg, Nevernal V. E. Vergeberg, V. Vergeber
- and V. E. Vasserberg, Katalitzory, Soderzhash, Nausen Kompleksy Materialy Simpoz., Tashkant, Novosibirik, 1980, Chapter 1, p 185, Chem. Abstr., 94, 46425 (1981). F. Dawans and D. Morel, J. Mol. Catal., 3, 403 (1978)
- W. Skupinski and S. Malinowski, J. Mol. Catal., 4, 95 (1978).
- (407) J. R. Jones and J. Symes, J. Chem. Soc. C, 1124 (1971).
 (408) F. K. Shmidt, Y. N. Petrovskaya, V. S. Tkatch, Tr. Irkutsk.
- Politekh. Inst., 69, 182 (1971); Chem. Abstr., 79, 53868 (1973).
 R. V. Chediya, S. K. Pluzhnov, V. I. Smetanyuk, V. A. Kabunov, and Kh. I. Areshidze, Soobshch. Akad. Nauk Gruz. SSR, 91, 619 (1978); Chem. Abstr., 90, 120919 (1979).
 V. S. Tkach, F. K. Shmidt, and T. N. Sergeeva, Kinet. Katal., 17, 200 (1978).
- 17, 242 (1976); *Kinet. Catal.*, 17, 208 (1976). (411) E. Hayashi, S. Narui, M. Ota, M. Sakai, Y. Sakakibara, and N. Uchino, Kogyo Kagaku Zasshi, 74, 1834 (1971); Chem. Abstr., 76, 34624 (1972).

 (412) F. K. Shmidt and V. S. Tkach, Tr. Irkutsk. Politekh. Inst., 69, 188 (1971); Chem. Abstr., 78, 29135 (1973).

 (413) V. S. Aliev, V. A. Soldatova, T. A. Ismailov, and R. M. Abstr., 78, 29135 (1973).
- dullaeva, Sb. Tr.—Inst. Neftekhim. Protsessov. im Yu. G. Mamedalieva, Akad. Nauk Az. SSR, 7, 37 (1976); Chem. Abstr., 86, 89095 (1977).
- (414) F. Hojabri, Erdoel Kohle, Erdgas, Petrochem., 23, 724 (1970).
 (415) Y. Sakakibara, K. Aiba, M. Sakai, and N. Uchino, Bull. Inst.
- (416) V. S. Tkach, L. V. Mironova, N. O. Malakhova, M. A. Chuikova, and F. K. Shmidt, Osnovn. Org. Sint. Neftekhim., 6, 6 (1976); Chem. Abstr., 90, 61799 (1979).
 (417) V. S. Aliev, A. A. Khanmetov, R. Kh. Mamedov, R. K. Kerimov, and V. M. Akhmetov, Zh. Org. Khim., 18, 265 (1982); Chem. Abstr. 96, 19809 (1982)
- Chem. Abstr., 96, 198992 (1982). V. S. Aliev, I. F. Mustafaeva, F. A. Nasirov, and R. K. Gadzhiev, Azerb. Khim. Zh. 10 (1979); Chem. Abstr., 94, 46686 (1981)
- V. S. Aliev, I. F. Mustafaeva, A. V. Soldatova, T. A. Ismailov
- R. M. Abdullaeva, F. A. Nasirov, and R. K. Gadzhiev, Azerb. Khim. Zh., 7 (1977); Chem. Abstr., 89, 107891 (1978).

 (420) L. V. Mironova, V. S. Tkach, F. K. Shmidt, A. V. Kalabina, and M. I. Tselyutina, Katal. Prevrasch. Uglevodorodov, 180 (1976).
- (1976); Chem. Abstr., 88, 6261 (1978).
 (421) F. K. Shmidt, L. V. Mironova, V. V. Saraev, V. S. Tkach, and A. V. Kalabina, React. Kinet. Catal. Lett., 4, 73 (1976).

- (422) F. K. Shmidt, L. V. Mironova, G. A. Kalabina, A. G. Proidakov, and A. V. Kalabina, Neftekhimiya, 16, 547 (1976).
 (423) G. Hata and A. Miyake, Chem. Ind. (London), 921 (1967).
 (424) F. K. Shmidt, L. V. Mironova, V. V. Saraev, V. A. Graznykh, T. V. Donitrieva, and G. V. Ratovskii, *Kinet. Katal.*, **20**, 622 (1979); *Chem. Abstr.*, **91**, 192722 (1979). (425) F. K. Shmidt, L. V. Mironova, V. S. Tkach, and A. V. Kala-

- (425) F. K. Shmidt, L. V. Mironova, V. S. Tkach, and A. V. Kalabina, Kinet. Katal., 16, 270 (1975).
 (426) L. V. Mironova, F. K. Shmidt, V. S. Tkach, and V. I. Omistriev, Neftekhimiya, 18, 205 (1978).
 (427) L. V. Mironova, F. K. Shmidt, V. S. Tkach, and V. I. Omistriev, Neftekhimiya, 18, 205 (1978).
 (428) N. Kawata, T. Mizoroki, and A. Ozaki, J. Mol. Catal., 1, 275 (1978).
- (429) N. V. Petrushanskaya, A. I. Kurapova, N. M. Rodionova, and V. Sh. Feldblyum, Kinet. Katal., 17, 1345 (1976); Kinet. Catal., 17, 1165 (1977)
- (430) F. P. Duplessis, J. A. K. Duplessis, and J. Dekker, S. Afr. J. Chem., 30, 129 (1977).
 (431) R. De Haan and J. Dekker, J. Catal., 35, 202 (1974).
 (432) F. K. Shmidt, L. V. Mironova, A. G. Proidakov, G. Kalabin,

- (402) F. K. Shinidt, L. V. Mirohova, A. G. Proidakov, G. Kalabih, G. V. Ratovskii, and T. V. Dmitrieva, Kinet. Katal., 19, 150 (1978); Chem. Abstr., 88, 189541 (1978).
 (433) F. K. Shmidt, L. V. Mironova, A. G. Proidakov, and A. V. Kalabina, Koord. Khim., 4, 1608 (1978); Chem. Abstr., 90, 5298 (1979).
- 5838 (1979).
 (434) T. N. Nikonova, . S. Tkach, F. K. Shmidt, and I. I. Moiseev, Neftekhimiya, 20, 534 (1980); Chem. Abstr., 94, 3701 (1981).
 (435) O. T. Onsager, H. Wang, and U. Blindheim, Helv. Chim.
- (435) O. T. Onsager, H. Wang, and U. Blindneim, new. Crim. Acta, 52, 230 (1969).
 (436) G. G. Eberhardt and W. Po. Griffin, J. Catal., 16, 245 (1970).
 (437) V. M. Akhmedov, V. G. Mardanov, F. R. Sultonova, F. F. Kurbonova, R. Kh. Mamedov, and T. A. Agave, Deposted Doc. VINITI, 4406 (1980); Chem. Abstr., 96, 104836 (1982).
 (438) M. Uchino, K. Asagi, A. Yamamoto, and S. Ikeda, J. Organomet. Chem., 84, 93 (1975).
 (439) G. Henrici-Olive and S. Olive, Transition Met. Chem. (Weinheim Ger.) 1 109 (1976).

- (449) G. Henrict-Olive and S. Olive, Transition Met. Chem. (Weinheim, Ger.) 1, 109 (1976).
 (440) R. De Haan and J. Dekker, J. Catal., 44, 15 (1976).
 (441) G. Henrici-Olive and S. Olive, Angew. Chem., 87, 110 (1975); Angew. Chem., Int. Ed. Engl. 14, 104 (1975).
 (442) J. S. Yoo and R. Koncos, U.S. Patent 3641 188 (1972); Chem.
- Abstr., 76, 99064 (1972)
- (443) J. S. Yoo and R. Koncos, U.S. Patent, 3803053 (1974); Chem. Abstr., 81, 50335 (1974)
- (444) J. S. Yoo, U.S. Patent 3655811 (1972); Chem. Abstr., 77, 4851 (1972). (445) J. S. Yoo, U.S. Patent 3808150 (1974); Chem. Abstr., 81,
- 121442 (1974)
- (446) P. Smith and R. E. Goddard, British Patent 876 680 (1961); Chem. Abstr., 57, 8435 (1962)
- (447) R. E. Goddard, and P. Smith, British Patent 853 187 (1960);
- Chem. Abstr., 55, 23341 (1961).

 (448) Y. Chauvin, J. Gaillard, G. Lefebvre, and L. H. Van, German Offen. 2911691 (1979); Chem. Abstr., 92, 41307 (1980).

 (449) K. Ziegler and H. G. Gellert, U.S. Patent 2695 327 (1954);
- Chem. Abstr., **50**, 1073 (1956)
- (450) K. Ziegler, German Patent 878 560 (1953); Chem. Abstr., 51, 9670 (1957)
- (451) K. Ziegler, British Patent 775 384 (1957); Chem. Abstr., 52,
- (452) O. Akio and K. Takamichi, Japanese Patent 7397803 (1973);
- Chem. Abstr., 80, 70285 (1974). (453) O. Akio and K. Takanichi, Japanese Patent 7 397 802 (1973);
- Chem. Abstr., 80, 70284 (1974). (454) S. Mereier and M. Michiels, French Patent 1 419 670 (1965);
- Chem. Abstr., 65, 10494 (1966).
 S. I. Kryukov, A. M. Kutin, G. P. Komissarova, L. D. Myasnikova, and M. I. Farborov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 7, 821 (1964); Chem. Abstr., 62, 8985
- (456) G. P. Belov, F. S. D'yachhovskii, V. I. Zhykov, R. Kh. Dinilov, E. V. Kyznitsov, and V. F. Sopin, USSR Patent 2194949 (1975); Chem. Abstr., 87, 84495 (1977).
 (457) French Patent 1533588 (1966).6
- (458)French Patent 1420952 (1965); Chem. Abstr., 65, 13539 (1966)
- (459)Netherland Patent 6 705 681 (1967).6
- French Patent 1535 201 (1966).⁶ British Patent 1101657 (1965).⁶ (460)
- (461)
- Netherland Patent 6618467 (1966).6 (462)
- J. K. Hamberg and J. R. Jones, Netherland Patent 6 609 512 (1967); Chem. Abstr., 67, 53609 (1967). (463)
- (464) Netherland Patent 6 609 513 (1967); Chem. Abstr., 67, 53611
- (465) F. Petit and C. Arzoyyan, J. Organomet. Chem., 202, 319 (1980); Chem. Abstr., 94, 83234 (1981).
 (466) G. G. Eberhardt, U.S. Patent 3 482 001 (1969); Chem. Abstr.,
- 72, 42720 (1970)
- H. E. Dunn, U.S. Patent 3 686 353 (1972); Chem. Abstr., 77, 151425 (1972).

- (468) H. E. Dunn, U.S. Patent 3734975 (1973); Chem. Abstr., 79,
- F. Petit, H. Musotti, G. Peiffer, and G. Biono, J. Organomet.
- Chem., 244, 273 (1983); Chem. Abstr., 99, 52975 (1983). (470) M. I. Aliev and S. I. Fischer, Sb. Tr—Inst. Neftiikhim. Protsessovim. Yu. G. Mamedalieva Akad. Nauk Az. SSR, 9,
- 130 (1977); Chem. Abstr., 89, 42275 (1978).
 (471) M. Izawa, S. Yamada, and N. Kunimoto, Japanese Patent, 7524 281 (1975); Chem. Abstr., 84, 30384 (1976).
 (472) S. G. Abasova, V. V. Amerik, D. V. Ivanyukov, B. A. Krentsel, L. S. Muraveva, E. A. Mushina, V. Sh. Shteinbak, F. I. Yakobson, and V. F. Petrova, USSR Patent 289 102 (1970); Chem. Abstr., 74, 142621 (1971).
 (473) Netherland Patent 6 409 179 (1965); Chem. Abstr., 63, 5770.
- (473) Netherland Patent 6 409 179 (1965); Chem. Abstr., 63, 5770
- (474) K. Zhou, Z. Gao, and W. Keim, Proceedings of the International Congress on Catalysis, Berlin, 1984, Vol. 5, p 429.
- (475) British Patent 1 101 498 (1965).
- J. K. Hambling and J. R. Jones, British Patent 1123474 (1968); Chem. Abstr., 69, 105858 (1968).
- S. Wolfgang, French Patent 1541413 (1968); Chem. Abstr., 72, 3108 (1970).
- (478) E. Takagi, M. Matsui, K. Otsu, and Y. Iwama, Japanese Patent 7138766 (1971); Chem. Abstr., 76, 24668 (1972).
- Y. Chauvin, G. Lefebvre, and M. Uchino, French Patent 1540 270 (1966); Chem. Abstr., 71, 80633 (1969)
- (480) K. Hiyo and S. Karl, German Patent 1178419 (1964); Chem. Abstr., 61, 15973 (1964).
- (481) Netherland Patent 6612339 (1967); Chem. Abstr., 67, 63689
- (482) Netherland Patent 6812618 (1967).6
- (483) J. K. Humbling, British Patent 1 106 734 (1966); Chem. Abstr., 69, 43388 (1968).
- French Patent 1560 865 (1967).6
- (485) British Patent 1 243 809 (1971); Chem. Abstr., 75, 117955
- (486) N. H. Phung and G. Lefebvre, French Patent 1549177 (1968); Chem. Abstr., 72, 89736 (1970).
 (487) J. K. Hambling and J. R. Jones, Netherland Patent 6608574
- (1967); Chem. Abstr., 67, 2739 (1967). Y. P. L. M. Castille and P. T. Parker, German Offen 2021 523 (488)
- (1971); Chem. Abstr., 74, 124765 (1971). (489) Y. P. L. M. Castille and P. T. Parker, German Offen 2021 524
- (1971); Chem. Abstr., 74, 140889 (1971). (490) F. K. Shmidt, V. S. Tkach, and A. V. Kalabina, USSR Patent
- 379 554 (1973); Chem. Abstr., 79, 52761 (1973). (491) French Patent 95 635 (1971); Chem. Abstr., 77, 113781 (1972).
- (492) A. H. Neal and P. T. Parker, U.S. Patent 3686352 (1972);
- Chem. Abstr., 86, 105904 (1977).

 (493) E. Takagi, M. Matsui, K. Otsu, and Y. Iwama, Japanese Patent 7 223 286 (1972); Chem. Abstr., 77, 87819 (1972).

 (494) J. R. Jones, and I. Priestley, British Patent 1 143 863 (1971);
- German Offen 1643716 (1971); Chem. Abstr., 70, 87001 (1969)
- J. R. Jones and L. Priestley, British Patent 1159496 (1969); Chem. Abstr., 72, 12040 (1970).
- (496) French Patent 1576134 (1969); Chem. Abstr., 72, 78358
- (497) E. H. Drew, U.S. Patent 3 390 201 (1968); Chem. Abstr., 69, 51513 (1968).
- J. R. Jones and T. J. Symes, German Offen 1813115 (1969); Chem. Abstr., 71, 123489 (1969). (498)
- (499) P. G. Bercik, K. J. Metzger, and H. E. Swift, Ind. Eng. Chem. Prod. Res. Dev., 17, 214 (1978).
 (500) V. S. Tkach, F. K. Shmidt, N. D. Malakhova, and Yu. S. Levkovskil, USSR Patent 535 266 (1976); Chem. Abstr., 86, 105904 (1977)
- 105904 (1977).
 (501) W. Schulz, S. Voelkner, K. Becker, H. D. Berrouschot, D. Hans, and E. Kurras, German Patent 112973 (1975); Chem. Abstr., 84, 121088 (1976).
 (502) J. S. Yoo and R. L. Milam, U.S. Patent 3697617 (1972); Chem. Abstr., 78, 3652 (1973).
 (503) J. S. Yoo and R. L. Milam, U.S. Patent 3954668 (1976); Chem. Abstr., 85, 33719 (1976).
 (504) Y. Chauvin and J. Gaillard, Belgium Patent 874819 (1979); Chem. Abstr., 92, 75810 (1980).

- Chem. Abstr., 92, 75810 (1980). I. Ya. Tyuryaev, V. Sh. Feldblyum, L. D. Kononova, G. P. Komissarova, B. A. Grigorovich, and T. S. Bodnaryuk, British
- Patent 1051564 (1966); Chem. Abstr., 66, 65044 (1967). Y. Chauvin, D. Commereuce, J. Gaillard, G. Lefebyre, and N. H. Phung, European Patent 12685 (1980); Chem. Abstr., 94, 16361 (1981).

- (507) L. G. Cannell and E. F. Majoon, U.S. Patent 3 355 510 (1965); Chem. Abstr., 68, 49017 (1968).
 (508) M. Takahashi, Y. Fujii, and M. Yamaguchi, Japanese Patent 7 627 644 (1976); Chem. Abstr., 86, 89148 (1977).
 (509) K. A. Taylor, W. Hewertson, and J. A. Leonard, British Patent 1 131 146 (1966); Chem. Abstr., 70, 37139 (1969).
 (510) E. T. Schill, British Patent 1 10 891 (1967).
- E. T. Smith, British Patent 1140821 (1967); Chem. Abstr. 70, 96143 (1969).

- (511) H. Mori, I. Nagaoka, S. Hirayanagi, and A. Kihinoki, Japa-
- (511) H. Ivori, I. Ivagaoka, S. Hirayanagi, and A. Kilninoki, Japanese Patent 7249563 (1972); Chem. Abstr., 78, 110508 (1973).
 (512) H. Sato, H. Tojima, and S. Yasui, German Offen 2835365 (1979); Chem. Abstr., 90, 168036 (1979).
 (513) H. Mori, K. Ikeda, I. Nagaoka, S. Hirayangi, I. Shimizu, and A. Koguri, Japanese Patent 7224523 (1972); Chem. Abstr., 77, 87812 (1972).
- (514) H. Yoshiura and T. Arakawa, Japanese Patent 7537163 (1975); Chem. Abstr., 85, 5176 (1976).
 (515) H. Mori, K. Ikeda, I. Nagoha, S. Hirayanagi, A. Kogure, and S. Shimizu, Japanese Patent 7 222 207 (1972); Chem. Abstr., (1978). 7, 100695 (1972)
- (516) H. Mori, K. Ikeda, I. Nagaoka, S. Hirayanagi, I. Shimizu, and A. Kogure, Japanese Patent 7 222 206 (1972); Chem. Abstr., 77, 87808 (1972).
- (517) Japanese Patent 82 169 433 (1982); Chem. Abstr., 98, 106775 (1983).
- (518) Japanese Patent 57 167 932 (1982); Chem. Abstr., 98, 88802
- (519) H. Takeshi and M. Akihisa, Japanese Patent 7 103 161 (1971); Chem. Abstr., 74, 124757 (1971).
- (520)Y. Chauvin and M. Uchino, French Patent 1549202 (1968); Chem. Abstr., **71**, 123487 (1969).
- (521) G. G. Eberhardt, French Patent 1528160 (1966); Chem.
- Abstr., 71, 38312 (1969)
- (522) T. Hata, K. Takahashi, and A. Miyake, Japanese Patent 7 222 807 (1972); Chem. Abstr., 77, 87818 (1972).
 (523) D. Tripers de Hault, R. E. G. Emmanuel, M. Van Tongelen, and H. R. Debus, German Offen 2 410 851 (1974); Chem. 4790 (2007).
- Abstr., 82, 3739 (1975).
- (524) M. Uchino, Y. Chauvin, and G. Lefebvre, C. R. Hebd Seances Acad. Sci., 265, 103 (1967). (525) E. A. Zuech, U.S. Patent 3 865 892 (1975); Chem. Abstr., 82,
- 139267 (1975)
- (526) H. E. Dunn, U.S. Patent 3 636 128 (1972); Chem. Abstr., 76, 71985 (1972).
- Yoshiura and T. Arakawa, Japanese Patent 7522523 (527) A. (1975); Chem. Abstr., 84, 43278 (1976). (528) W. P. Griffith, Jr., U.S. Patent 3467726 (1969); Chem. Abstr.,
- 71, 123492 (1969)
- (529) E. A. Zuech, U.S. Patent 3 485 881 (1969); Chem. Abstr., 72, 99989 (1970)
- (530) W. P. Griffith, Jr., and W. A. Butte German Offen. 1810027 (1967); Chem. Abstr., 71, 92057 (1969). (531) F. Rohrscheid, German Offen 1643 976 (1971); French Patent
- 1581 030 (1969); Chem. Abstr., 73, 35938 (1970). (532) M. Born, Y. Chauvin, G. Lefebyre, and N. H. Phung, C. R.
- Hebd. Seances Acad. Sci., **268**, 1600 (1969)
- (533)T. Arakawa, Japanese Patent 7 222 204 (1966); Chem. Abstr., **77**, 87807 (1972
- (534) H. E. Dunn, U.S. Patent 3 689 588 (1972); Chem. Abstr., 78, 29197 (1973). (535) D. R. Fahey, U.S. Patent 4101566 (1978); Chem. Abstr., 90,
- 6538 (1979).
- (536) D. R. Fahey and J. E. Mahan, U.S. Patent 4123447 (1978); Chem. Abstr., 90, 72349 (1979). British Patent 1 138 575 (1966).
- (538) M. Itakura and H. Ito, Japanese Patent 7417722 (1974);
 Chem. Abstr., 83, 11139 (1975).
 (539) V. Sh. Feldblyum, N. V. Petrushankaya, and A. M. Kutin,
- USSR Patent 405 849 (1973); Chem. Abstr., 80, 82043 (1974).
- V. Sh. Feldblyum, N. V. Petrusanskaya, and A. M. Kutin, USSR Patent 436 808 (1974); Chem. Abstr., 81, 135425
- (541) G. S. Schaffel, U.S. Patent 3 104 269 (1963); Chem. Abstr., 59, 14181 (1963).
- (542) Belgium Patent 868 377 (1978); Chem. Abstr., 90, 103366
- Y. Chauvin, German Offen 2032140 (1971); Chem. Abstr., 74, (543)87306 (1971). (544) J. S. Yoo, U.S. Patent 4010216 (1977); Chem. Abstr., 86,

- (544) J. S. 190, C.S. Patent 4010216 (1977); Chem. Abstr., 86, 189166 (1977).
 (545) N. Kawata, T. Mizoroki, and A. Ozaki, Japanese Patent 75 135 001 (1975); Chem. Abstr., 84, 135075 (1976).
 (546) K. Kawamoto, T. Imanaka, and S. Teranishi, Nippon Kagaku Zasshi, 89, 639 (1968).
 (547) P. L. Maxfield, U.S. Patent 3427 365 (1966); Chem. Abstr., 70, 87002 (1969).
 (548) G. G. Eberhardt and W. P. Griffith, Jr., U.S. Patent 3472 911
- (548) G. G. Eberhardt and W. P. Griffith, Jr., U.S. Patent 3 472 911 (1969); Chem. Abstr., 72, 57475 (1970).
 (549) G. G. Eberhardt and W. P. Griffith, Jr., U.S. Patent 3 459 825 (1967); Chem. Abstr., 71, 112383 (1969).
 (550) C. O. Carter, U.S. Patent 4 176 086 (1979); Chem. Abstr., 92, 1232 (1969).
- 47950 (1980).
- (1950) H. E. Swift and W. Ching-Young, U.S. Patent 3622649 (1971); Chem. Abstr., 76, 33758 (1972).
 (552) M. Uchino, Y. Chauvin, and G. Lefebvre, C. R. Acad. Sci., Ser. c., 265, 103 (1967); Chem. Abstr., 68, 48729 (1968).
 (553) R. Rienaecker and G. Wilke, German Offen 1493217 (1978); Chem. Abstr., 89, 108629 (1972).
- Chem. Abstr., 89, 108683 (1972).

- (554) H. E. Dunn, U.S. Patent 3872026 (1975); Chem. Abstr., 83,
- (555) H. E. Dunn, U.S. Patent 3760027 (1973); Chem. Abstr., 80, 70271 (1974).
- (556) H. E. Dunn, U.S. Patent 3 651 111 (1972); Chem. Abstr., 76, 139911 (1972).
- (557) H. Yoshiura and T. Arakawa, Japanese Patent 7 537 162 (1975); Chem. Abstr., 85, 20584 (1976).
 (558) H. E. Dunn, U.S. Patent 3 592 870 (1971); Chem. Abstr., 75,
- 76135 (1971).
- (559) A. F. Masters and K. J. Cavell, Pet. Int. Application 8302907; Chem. Abstr., 100, 7392 (1984).
 (560) H. E. Dunn, U.S. Patent 3737434 (1973); Chem. Abstr., 79,
- 31449 (1973).
- (561) G. Desgrandchamps, H. Hemmer, and M. Haurie, German

- Offen 1964701 (1970); Chem. Abstr., 74, 33039 (1971).

- Offen 1 964 701 (1970); Chem. Abstr., 74, 33039 (1971).
 (562) G. Desgrandchamps, H. Hemmer, and M. Haurie, French Patent 1 602 824 (1971); Chem. Abstr., 75, 129314 (1971).
 (563) G. Desgrandchamps, H. Hemmer, and M. Haurie, German Offen 2 001 923 (1970); Chem. Abstr., 74, 3302 (1971).
 (564) H. Mix, E. Kurras, F. W. Wilke, J. Reihsig, W. Schulz, H. Fuhrmann, I. Gassert, W. Fuchs, and J. Meissner, German (East) Patent 99 556 (1973); Chem. Abstr., 80, 132760 (1974).
 (565) N. H. Phung and G. Lefebvre, C. R. Hebd. Seances Acad. Sci. 265, 519 (1967).
 (566) H. E. Dunn, U.S. Patent 3 709 955 (1973); Chem. Abstr., 78, 123977 (1973).
- 123977 (1973). (567) E. J. Smutny, U.S. Patent 4436 946 (1984); Chem. Abstr., 100,
- 191351 (1984).